added lib version output
Browse files
mwe.ipynb
CHANGED
@@ -2,23 +2,32 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "6942ccac",
|
7 |
"metadata": {},
|
8 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
{
|
10 |
"data": {
|
11 |
"text/plain": [
|
12 |
"'cuda'"
|
13 |
]
|
14 |
},
|
15 |
-
"execution_count":
|
16 |
"metadata": {},
|
17 |
"output_type": "execute_result"
|
18 |
}
|
19 |
],
|
20 |
"source": [
|
21 |
"import torch\n",
|
|
|
22 |
"from transformers import CLIPModel, CLIPVisionModel, CLIPProcessor\n",
|
23 |
"from transformers import logging\n",
|
24 |
"# Supress some unnecessary warnings when loading the CLIPTextModel\n",
|
@@ -40,6 +49,28 @@
|
|
40 |
{
|
41 |
"cell_type": "code",
|
42 |
"execution_count": 7,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"id": "6591cd09",
|
44 |
"metadata": {},
|
45 |
"outputs": [],
|
@@ -51,10 +82,44 @@
|
|
51 |
},
|
52 |
{
|
53 |
"cell_type": "code",
|
54 |
-
"execution_count":
|
55 |
"id": "0a701777",
|
56 |
"metadata": {},
|
57 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
"source": [
|
59 |
"url = \"http://images.cocodataset.org/val2017/000000039769.jpg\"\n",
|
60 |
"image = Image.open(requests.get(url, stream=True).raw)\n",
|
@@ -64,23 +129,17 @@
|
|
64 |
},
|
65 |
{
|
66 |
"cell_type": "code",
|
67 |
-
"execution_count":
|
68 |
"id": "e148125e",
|
69 |
"metadata": {},
|
70 |
"outputs": [
|
71 |
{
|
72 |
"data": {
|
73 |
"text/plain": [
|
74 |
-
"
|
75 |
-
" [ 0.8688, 0.1690, 0.6678, ..., 0.5126, -1.1465, -0.1258],\n",
|
76 |
-
" [ 1.1742, -0.7551, 0.0396, ..., 0.7166, -0.5458, 0.0031],\n",
|
77 |
-
" ...,\n",
|
78 |
-
" [ 0.8636, 0.2223, 0.6411, ..., 0.5242, -0.8104, 0.0170],\n",
|
79 |
-
" [ 0.6842, -1.1056, -0.2486, ..., 0.7901, 0.4862, -0.0949],\n",
|
80 |
-
" [ 0.8934, 0.0066, 0.9235, ..., 0.5707, -0.8436, -0.2182]]]), pooler_output=tensor([[-0.9326, -1.3289, 0.7919, ..., -0.3337, -0.0479, -0.7106]]), hidden_states=None, attentions=None)"
|
81 |
]
|
82 |
},
|
83 |
-
"execution_count":
|
84 |
"metadata": {},
|
85 |
"output_type": "execute_result"
|
86 |
}
|
@@ -94,7 +153,7 @@
|
|
94 |
},
|
95 |
{
|
96 |
"cell_type": "code",
|
97 |
-
"execution_count":
|
98 |
"id": "f28bb4b6",
|
99 |
"metadata": {},
|
100 |
"outputs": [
|
@@ -121,7 +180,7 @@
|
|
121 |
"}"
|
122 |
]
|
123 |
},
|
124 |
-
"execution_count":
|
125 |
"metadata": {},
|
126 |
"output_type": "execute_result"
|
127 |
}
|
@@ -132,7 +191,7 @@
|
|
132 |
},
|
133 |
{
|
134 |
"cell_type": "code",
|
135 |
-
"execution_count":
|
136 |
"id": "6726b263",
|
137 |
"metadata": {},
|
138 |
"outputs": [
|
@@ -161,7 +220,7 @@
|
|
161 |
"}"
|
162 |
]
|
163 |
},
|
164 |
-
"execution_count":
|
165 |
"metadata": {},
|
166 |
"output_type": "execute_result"
|
167 |
}
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"id": "6942ccac",
|
7 |
"metadata": {},
|
8 |
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stderr",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"/home/fredguth/.miniconda3/envs/py39/lib/python3.9/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: /home/fredguth/.miniconda3/envs/py39/lib/python3.9/site-packages/torchvision/image.so: undefined symbol: _ZN3c104cuda20CUDACachingAllocator9allocatorE\n",
|
14 |
+
" warn(f\"Failed to load image Python extension: {e}\")\n"
|
15 |
+
]
|
16 |
+
},
|
17 |
{
|
18 |
"data": {
|
19 |
"text/plain": [
|
20 |
"'cuda'"
|
21 |
]
|
22 |
},
|
23 |
+
"execution_count": 1,
|
24 |
"metadata": {},
|
25 |
"output_type": "execute_result"
|
26 |
}
|
27 |
],
|
28 |
"source": [
|
29 |
"import torch\n",
|
30 |
+
"\n",
|
31 |
"from transformers import CLIPModel, CLIPVisionModel, CLIPProcessor\n",
|
32 |
"from transformers import logging\n",
|
33 |
"# Supress some unnecessary warnings when loading the CLIPTextModel\n",
|
|
|
49 |
{
|
50 |
"cell_type": "code",
|
51 |
"execution_count": 7,
|
52 |
+
"id": "4813b77f",
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [
|
55 |
+
{
|
56 |
+
"data": {
|
57 |
+
"text/plain": [
|
58 |
+
"'4.23.1'"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
"execution_count": 7,
|
62 |
+
"metadata": {},
|
63 |
+
"output_type": "execute_result"
|
64 |
+
}
|
65 |
+
],
|
66 |
+
"source": [
|
67 |
+
"import transformers\n",
|
68 |
+
"transformers.__version__"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": 2,
|
74 |
"id": "6591cd09",
|
75 |
"metadata": {},
|
76 |
"outputs": [],
|
|
|
82 |
},
|
83 |
{
|
84 |
"cell_type": "code",
|
85 |
+
"execution_count": 3,
|
86 |
"id": "0a701777",
|
87 |
"metadata": {},
|
88 |
+
"outputs": [
|
89 |
+
{
|
90 |
+
"data": {
|
91 |
+
"text/plain": [
|
92 |
+
"{'input_ids': tensor([[49406, 320, 1125, 539, 1237, 3989, 6982, 530, 320, 3360,\n",
|
93 |
+
" 15723, 49407]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), 'pixel_values': tensor([[[[ 0.5873, 0.5873, 0.6165, ..., 0.0617, 0.0471, -0.0259],\n",
|
94 |
+
" [ 0.5727, 0.5727, 0.6603, ..., 0.1201, 0.0763, 0.0909],\n",
|
95 |
+
" [ 0.5873, 0.5435, 0.6165, ..., 0.0325, 0.1201, 0.0617],\n",
|
96 |
+
" ...,\n",
|
97 |
+
" [ 1.8719, 1.8573, 1.8719, ..., 1.3902, 1.4340, 1.4194],\n",
|
98 |
+
" [ 1.8281, 1.8719, 1.8427, ..., 1.4486, 1.4340, 1.5070],\n",
|
99 |
+
" [ 1.8573, 1.9011, 1.8281, ..., 1.3756, 1.3610, 1.4486]],\n",
|
100 |
+
"\n",
|
101 |
+
" [[-1.3169, -1.3019, -1.3169, ..., -1.4970, -1.4369, -1.4820],\n",
|
102 |
+
" [-1.2418, -1.2718, -1.2268, ..., -1.4369, -1.4669, -1.4519],\n",
|
103 |
+
" [-1.2568, -1.3169, -1.2268, ..., -1.4669, -1.4069, -1.4519],\n",
|
104 |
+
" ...,\n",
|
105 |
+
" [ 0.1239, 0.1089, 0.1239, ..., -0.7016, -0.6865, -0.6865],\n",
|
106 |
+
" [ 0.0789, 0.0939, 0.0488, ..., -0.6565, -0.6865, -0.6115],\n",
|
107 |
+
" [ 0.0939, 0.1089, 0.0038, ..., -0.7766, -0.7316, -0.6115]],\n",
|
108 |
+
"\n",
|
109 |
+
" [[-0.4848, -0.4137, -0.3853, ..., -0.9541, -0.8545, -0.8545],\n",
|
110 |
+
" [-0.4137, -0.4706, -0.3711, ..., -0.8119, -0.8545, -0.7834],\n",
|
111 |
+
" [-0.3284, -0.4422, -0.3853, ..., -0.8688, -0.8119, -0.8830],\n",
|
112 |
+
" ...,\n",
|
113 |
+
" [ 1.5771, 1.6482, 1.6340, ..., 0.9088, 0.9514, 0.8945],\n",
|
114 |
+
" [ 1.6198, 1.6055, 1.6055, ..., 0.8661, 0.8092, 0.7950],\n",
|
115 |
+
" [ 1.6624, 1.6766, 1.5487, ..., 0.7950, 0.8661, 0.8519]]]])}"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
"execution_count": 3,
|
119 |
+
"metadata": {},
|
120 |
+
"output_type": "execute_result"
|
121 |
+
}
|
122 |
+
],
|
123 |
"source": [
|
124 |
"url = \"http://images.cocodataset.org/val2017/000000039769.jpg\"\n",
|
125 |
"image = Image.open(requests.get(url, stream=True).raw)\n",
|
|
|
129 |
},
|
130 |
{
|
131 |
"cell_type": "code",
|
132 |
+
"execution_count": 4,
|
133 |
"id": "e148125e",
|
134 |
"metadata": {},
|
135 |
"outputs": [
|
136 |
{
|
137 |
"data": {
|
138 |
"text/plain": [
|
139 |
+
"(torch.Size([1, 257, 1024]), torch.Size([1, 12, 768]))"
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
]
|
141 |
},
|
142 |
+
"execution_count": 4,
|
143 |
"metadata": {},
|
144 |
"output_type": "execute_result"
|
145 |
}
|
|
|
153 |
},
|
154 |
{
|
155 |
"cell_type": "code",
|
156 |
+
"execution_count": 5,
|
157 |
"id": "f28bb4b6",
|
158 |
"metadata": {},
|
159 |
"outputs": [
|
|
|
180 |
"}"
|
181 |
]
|
182 |
},
|
183 |
+
"execution_count": 5,
|
184 |
"metadata": {},
|
185 |
"output_type": "execute_result"
|
186 |
}
|
|
|
191 |
},
|
192 |
{
|
193 |
"cell_type": "code",
|
194 |
+
"execution_count": 6,
|
195 |
"id": "6726b263",
|
196 |
"metadata": {},
|
197 |
"outputs": [
|
|
|
220 |
"}"
|
221 |
]
|
222 |
},
|
223 |
+
"execution_count": 6,
|
224 |
"metadata": {},
|
225 |
"output_type": "execute_result"
|
226 |
}
|