Spaces:
Running
on
L4
Running
on
L4
import gradio as gr | |
from gradio_webrtc import WebRTC, ReplyOnPause, AdditionalOutputs | |
import transformers | |
import numpy as np | |
from twilio.rest import Client | |
import os | |
import torch | |
import librosa | |
# pipe = transformers.pipeline( | |
# model="fixie-ai/ultravox-v0_4_1-llama-3_1-8b", | |
# trust_remote_code=True, | |
# device=torch.device("cuda"), | |
# ) | |
# whisper = transformers.pipeline( | |
# model="openai/whisper-large-v3-turbo", device=torch.device("cuda") | |
# ) | |
account_sid = os.environ.get("TWILIO_ACCOUNT_SID") | |
auth_token = os.environ.get("TWILIO_AUTH_TOKEN") | |
if account_sid and auth_token: | |
client = Client(account_sid, auth_token) | |
token = client.tokens.create() | |
rtc_configuration = { | |
"iceServers": token.ice_servers, | |
"iceTransportPolicy": "relay", | |
} | |
else: | |
rtc_configuration = None | |
def transcribe( | |
audio: tuple[int, np.ndarray], | |
transformers_chat: list[dict], | |
conversation: list[dict], | |
): | |
original_sr = audio[0] | |
target_sr = 16000 | |
audio_sr = librosa.resample( | |
audio[1].astype(np.float32) / 32768.0, orig_sr=original_sr, target_sr=target_sr | |
) | |
tf_input = [d for d in transformers_chat] | |
output = pipe( | |
{"audio": audio_sr, "turns": tf_input, "sampling_rate": target_sr}, | |
max_new_tokens=512, | |
) | |
transcription = whisper({"array": audio_sr.squeeze(), "sampling_rate": target_sr}) | |
conversation.append({"role": "user", "content": transcription["text"]}) | |
conversation.append({"role": "assistant", "content": output}) | |
transformers_chat.append({"role": "user", "content": transcription["text"]}) | |
transformers_chat.append({"role": "assistant", "content": output}) | |
yield AdditionalOutputs(transformers_chat, conversation) | |
with gr.Blocks() as demo: | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
Talk to Ultravox Llama 3.1 8b (Powered by WebRTC ⚡️) | |
</h1> | |
<p style='text-align: center'> | |
Once you grant access to your microphone, you can talk naturally to Ultravox. | |
When you stop talking, the audio will be sent for processing. | |
</p> | |
<p style='text-align: center'> | |
Each conversation is limited to 90 seconds. Once the time limit is up you can rejoin the conversation. | |
</p> | |
""" | |
) | |
with gr.Row(): | |
transformers_chat = gr.State( | |
value=[ | |
{ | |
"role": "system", | |
"content": "You are a friendly and helpful character. You love to answer questions for people.", | |
} | |
] | |
) | |
with gr.Group(): | |
transcript = gr.Chatbot(label="transcript", type="messages") | |
audio = WebRTC( | |
rtc_configuration=rtc_configuration, | |
label="Stream", | |
mode="send", | |
modality="audio", | |
) | |
audio.stream( | |
ReplyOnPause(transcribe), | |
inputs=[audio, transformers_chat, transcript], | |
outputs=[audio], | |
time_limit=90, | |
) | |
audio.on_additional_outputs( | |
lambda t, g: (t, g), | |
outputs=[transformers_chat, transcript], | |
queue=False, | |
show_progress="hidden", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |