LLMhistory / generators.py
freQuensy23's picture
Replace front
f0c7657
raw
history blame
3.81 kB
import asyncio
import json
import os
import aiohttp
import gradio as gr
import numpy as np
import spaces
from huggingface_hub import InferenceClient
import random
import torch
from huggingface_hub import AsyncInferenceClient
from transformers import LlamaTokenizer, LlamaForCausalLM, AutoTokenizer, AutoModelForCausalLM
async def query_llm(payload, model_name):
headers = {"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"}
async with aiohttp.ClientSession() as session:
async with session.post(f"https://api-inference.huggingface.co/models/{model_name}", headers=headers,
json=payload) as response:
return await response.json()
async def generate_mistral_7bvo1(system_input, user_input):
client = AsyncInferenceClient(
"mistralai/Mistral-7B-Instruct-v0.1",
token=os.getenv('HF_TOKEN'),
)
async for message in await client.chat_completion(
messages=[
{"role": "system", "content": system_input},
{"role": "user", "content": user_input}, ],
max_tokens=256,
stream=True,
):
yield message.choices[0].delta.content
async def generate_t5(system_input, user_input):
output = await query_llm({
"inputs": (inputs := f"{system_input}\n{user_input}"),
}, "google/flan-t5-large")
yield output[0]["generated_text"]
async def generate_gpt2(system_input, user_input):
output = await query_llm({
"inputs": (inputs := f"{system_input}\n{user_input}"),
}, "openai-community/gpt2")
yield output[0]["generated_text"][:532]
async def generate_llama2(system_input, user_input):
client = AsyncInferenceClient(
"meta-llama/Llama-2-7b-chat-hf",
token=os.getenv('HF_TOKEN')
)
async for message in await client.chat_completion(
messages=[
{"role": "system", "content": system_input},
{"role": "user", "content": user_input}, ],
max_tokens=256,
stream=True,
):
yield message.choices[0].delta.content
@spaces.GPU(duration=120)
def generate_openllama(system_input, user_input):
model_path = 'openlm-research/open_llama_3b_v2'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float16, device_map='cuda',
)
print('model openllama loaded')
input_text = f"{system_input}\n{user_input}"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_length=128)
return tokenizer.decode(output[0], skip_special_tokens=True)
@spaces.GPU(duration=120)
def generate_bloom(system_input, user_input):
model_path = 'bigscience/bloom-7b1'
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float16, device_map='cuda',
)
input_text = f"{system_input}\n{user_input}"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_length=128)
return tokenizer.decode(output[0], skip_special_tokens=True)
async def generate_llama3(system_input, user_input):
client = AsyncInferenceClient(
"meta-llama/Meta-Llama-3.1-8B-Instruct",
token=os.getenv('HF_TOKEN')
)
try:
async for message in await client.chat_completion(
messages=[
{"role": "system", "content": system_input},
{"role": "user", "content": user_input}, ],
max_tokens=256,
stream=True,
):
yield message.choices[0].delta.content
except json.JSONDecodeError:
pass