Spaces:
Running
Running
File size: 3,134 Bytes
276e2b6 c0be431 eb967be c0be431 79b2407 c0be431 c86acba 79b2407 c0be431 79b2407 c0be431 f0c7657 79b2407 f0c7657 79b2407 f0c7657 c0be431 d65753c c0be431 79b2407 eb967be 276e2b6 eb967be 276e2b6 c0be431 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import gradio
from dotenv import load_dotenv
from generators import *
import gradio as gr
from utils import async_zip_stream
load_dotenv()
async def handle(system_input: str, user_input: str):
print(system_input, user_input)
buffers = ["", "", "", "", "", ""]
async for outputs in async_zip_stream(
generate_gpt2(system_input, user_input),
generate_mistral_7bvo1(system_input, user_input),
generate_llama2(system_input, user_input),
generate_llama3(system_input, user_input),
generate_t5(system_input, user_input),
generate_mixtral(system_input, user_input),
):
# gpt_output, mistral_output, llama_output, llama2_output, llama3_output, llama4_output = outputs
for i, b in enumerate(buffers):
buffers[i] += str(outputs[i])
yield list(buffers)
with gr.Blocks() as demo:
system_input = gr.Textbox(label='System Input', value='You are AI assistant', lines=2)
with gr.Row():
gpt = gr.Textbox(label='gpt-2', lines=4, interactive=False, info='OpenAI\n14 February 2019')
t5 = gr.Textbox(label='t5', lines=4, interactive=False, info='Google\n12 Dec 2019')
llama2 = gr.Textbox(label='llama-2', lines=4, interactive=False, info='MetaAI\n18 Jul 2023')
with gr.Row():
mistral = gr.Textbox(label='mistral-v01', lines=4, interactive=False, info='MistralAI\n20 Sep 2023')
mixtral = gr.Textbox(label='mixtral', lines=4, interactive=False, info='Mistral AI\n11 Dec 2023')
llama3 = gr.Textbox(label='llama-3.1', lines=4, interactive=False, info='MetaAI\n18 Jul 2024')
user_input = gr.Textbox(label='User Input', lines=2, value='Calculate expression: 7-3=')
gen_button = gr.Button('Generate')
gen_button.click(
fn=handle,
inputs=[system_input, user_input],
outputs=[gpt, mistral, llama2, llama3, t5, mixtral],
)
user_input.submit(fn=handle,
inputs=[system_input, user_input],
outputs=[gpt, mistral, llama2, llama3, t5, mixtral], )
with gr.Row():
with gr.Column(scale=1):
gr.Image(value='icon.jpg')
with gr.Column(scale=4):
gradio.HTML("""<div style="text-align: center; font-family: 'Helvetica Neue', sans-serif; padding: 10px; color: #333333;">
<p style="font-size: 18px; font-weight: 600; margin-bottom: 8px;">
Эта демка была создана телеграм каналом <strong style="color: #007ACC;"><a href='https://t.me/mlphys'> mlphys</a></strong>. Другие мои социальные сети:
</p>
<p style="font-size: 16px;">
<a href="https://t.me/mlphys" target="_blank" style="color: #0088cc; text-decoration: none; font-weight: 500;">Telegram</a> |
<a href="https://x.com/quensy23" target="_blank" style="color: #1DA1F2; text-decoration: none; font-weight: 500;">Twitter</a> |
<a href="https://github.com/freQuensy23-coder" target="_blank" style="color: #0088cc; text-decoration: none; font-weight: 500;">GitHub</a>
</p>
</div>""")
demo.launch()
|