Spaces:
Sleeping
Sleeping
File size: 12,610 Bytes
c26ed9b e688e26 856c3dc a2df113 c60740f e688e26 c60740f c26ed9b e688e26 c9bea94 c60740f e688e26 5c717fb e688e26 856c3dc e688e26 856c3dc e688e26 856c3dc e688e26 856c3dc e688e26 856c3dc e688e26 856c3dc e688e26 877a41e e688e26 73463ed e688e26 73463ed e688e26 c60740f e688e26 c60740f e688e26 c60740f e688e26 a2df113 e688e26 856c3dc e688e26 c60740f e688e26 856c3dc e688e26 a2df113 5e9f512 7160c8d c60740f e688e26 c60740f e688e26 c60740f e688e26 c60740f e688e26 c60740f e688e26 c60740f c26ed9b e688e26 c26ed9b e688e26 c26ed9b e688e26 856c3dc e688e26 5c717fb e688e26 c26ed9b e688e26 c26ed9b e688e26 b8a76c3 e688e26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import warnings
warnings.filterwarnings('ignore')
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import torch
from tqdm import tqdm
from datasets import load_dataset
from datetime import datetime
from typing import List, Dict, Any
from torch.utils.data import DataLoader, Dataset
from functools import partial
# Configure GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize session state
if 'history' not in st.session_state:
st.session_state.history = []
if 'feedback' not in st.session_state:
st.session_state.feedback = {}
# Define subset size
SUBSET_SIZE = 500 # Starting with 500 items for quick testing
class TextDataset(Dataset):
def __init__(self, texts: List[str], tokenizer, max_length: int = 512):
self.texts = texts
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
return self.tokenizer(
self.texts[idx],
padding='max_length',
truncation=True,
max_length=self.max_length,
return_tensors="pt"
)
def generate_case_study(row: Dict[str, Any]) -> str:
"""Generate a detailed case study for a repository using available metadata"""
# Extract relevant information from the row
summary = row.get('summary', '').strip()
docstring = row.get('docstring', '').strip()
repo_name = row.get('repo', '').strip()
# Generate a more detailed overview using available information
overview = summary if summary else "This repository provides a software implementation"
if docstring:
# Extract the first paragraph of the docstring for additional context
first_para = docstring.split('\n\n')[0].strip()
overview = f"{overview}. {first_para}"
# Analyze the repository path to infer technology stack
path_components = row.get('path', '').lower().split('/')
tech_stack = []
# Common technology indicators in paths
if any('python' in comp for comp in path_components):
tech_stack.append("Python")
if any('tensorflow' in comp or 'tf' in comp for comp in path_components):
tech_stack.append("TensorFlow")
if any('pytorch' in comp for comp in path_components):
tech_stack.append("PyTorch")
if any('react' in comp for comp in path_components):
tech_stack.append("React")
tech_stack_str = ", ".join(tech_stack) if tech_stack else "various technologies"
case_study = f"""
### Overview
{overview}
### Technical Implementation
This project is built using {tech_stack_str}. The implementation focuses on providing a robust and maintainable solution for {summary.lower() if summary else 'the specified requirements'}.
### Key Features
- Primary functionality: {summary if summary else 'Implementation of core project requirements'}
- Complete documentation and code examples
- Well-structured implementation following best practices
- Modular design for easy integration and customization
### Use Cases
This repository is particularly valuable for:
- Developers implementing similar functionality in their projects
- Teams looking for reference implementations and best practices
- Projects requiring similar technical capabilities
- Learning and educational purposes in related technical domains
### Integration Considerations
The repository can be integrated into existing projects, with consideration for:
- Compatibility with existing technology stacks
- Required dependencies and prerequisites
- Potential customization needs
- Performance and scalability requirements
"""
return case_study
def display_recommendations(recommendations: pd.DataFrame):
"""Display recommendations in a list format with all details"""
st.markdown("### π― Top Recommendations")
# Create a list of recommendations
for idx, row in recommendations.iterrows():
with st.container():
# Header with repository name and match score
col1, col2 = st.columns([3, 1])
with col1:
st.markdown(f"### {idx + 1}. {row['repo']}")
with col2:
st.metric("Match Score", f"{row['similarity']:.2%}")
# Repository details
st.markdown(f"**URL:** [View Repository]({row['url']})")
st.markdown(f"**Path:** `{row['path']}`")
# Feedback buttons
col1, col2, col3 = st.columns([1, 1, 4])
with col1:
if st.button("π", key=f"like_{idx}"):
st.session_state.feedback[row['repo']] = st.session_state.feedback.get(row['repo'], {'likes': 0, 'dislikes': 0})
st.session_state.feedback[row['repo']]['likes'] += 1
st.success("Thanks for your feedback!")
with col2:
if st.button("π", key=f"dislike_{idx}"):
st.session_state.feedback[row['repo']] = st.session_state.feedback.get(row['repo'], {'likes': 0, 'dislikes': 0})
st.session_state.feedback[row['repo']]['dislikes'] += 1
st.success("Thanks for your feedback!")
# Documentation and case study in tabs
tab1, tab2 = st.tabs(["π Documentation", "π Case Study"])
with tab1:
if row['docstring']:
st.markdown(row['docstring'])
else:
st.info("No documentation available")
with tab2:
st.markdown(generate_case_study(row))
st.markdown("---")
@st.cache_resource
def load_data_and_model():
"""Load the dataset and model with optimized memory usage"""
try:
# Load dataset
dataset = load_dataset("frankjosh/filtered_dataset")
data = pd.DataFrame(dataset['train'])
# Take a random subset
data = data.sample(n=min(SUBSET_SIZE, len(data)), random_state=42).reset_index(drop=True)
# Combine text fields
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
# Load model and tokenizer
model_name = "Salesforce/codet5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
if torch.cuda.is_available():
model = model.to(device)
model.eval()
return data, tokenizer, model
except Exception as e:
st.error(f"Error in initialization: {str(e)}")
st.stop()
def collate_fn(batch, pad_token_id):
max_length = max(inputs['input_ids'].shape[1] for inputs in batch)
input_ids = []
attention_mask = []
for inputs in batch:
input_ids.append(torch.nn.functional.pad(
inputs['input_ids'].squeeze(),
(0, max_length - inputs['input_ids'].shape[1]),
value=pad_token_id
))
attention_mask.append(torch.nn.functional.pad(
inputs['attention_mask'].squeeze(),
(0, max_length - inputs['attention_mask'].shape[1]),
value=0
))
return {
'input_ids': torch.stack(input_ids),
'attention_mask': torch.stack(attention_mask)
}
def generate_embeddings_batch(model, batch, device):
"""Generate embeddings for a batch of inputs"""
with torch.no_grad():
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model.encoder(**batch)
embeddings = outputs.last_hidden_state.mean(dim=1)
return embeddings.cpu().numpy()
def precompute_embeddings(data: pd.DataFrame, model, tokenizer, batch_size: int = 16):
"""Precompute embeddings with batching and progress tracking"""
dataset = TextDataset(data['text'].tolist(), tokenizer)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=partial(collate_fn, pad_token_id=tokenizer.pad_token_id),
num_workers=2,
pin_memory=True
)
embeddings = []
total_batches = len(dataloader)
# Create a progress bar
progress_bar = st.progress(0)
status_text = st.empty()
start_time = datetime.now()
for i, batch in enumerate(dataloader):
# Generate embeddings for batch
batch_embeddings = generate_embeddings_batch(model, batch, device)
embeddings.extend(batch_embeddings)
# Update progress
progress = (i + 1) / total_batches
progress_bar.progress(progress)
# Calculate and display ETA
elapsed_time = (datetime.now() - start_time).total_seconds()
eta = (elapsed_time / (i + 1)) * (total_batches - (i + 1))
status_text.text(f"Processing batch {i+1}/{total_batches}. ETA: {int(eta)} seconds")
progress_bar.empty()
status_text.empty()
# Add embeddings to dataframe
data['embedding'] = embeddings
return data
@torch.no_grad()
def generate_query_embedding(model, tokenizer, query: str) -> np.ndarray:
"""Generate embedding for a single query"""
inputs = tokenizer(
query,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
).to(device)
outputs = model.encoder(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1).cpu().numpy()
return embedding.squeeze()
def find_similar_repos(query_embedding: np.ndarray, data: pd.DataFrame, top_n: int = 5) -> pd.DataFrame:
"""Find similar repositories using vectorized operations"""
similarities = cosine_similarity([query_embedding], np.stack(data['embedding'].values))[0]
data['similarity'] = similarities
return data.nlargest(top_n, 'similarity')
# Load resources
data, tokenizer, model = load_data_and_model()
# Add info about subset size
st.info(f"Running with a subset of {SUBSET_SIZE} repositories for testing purposes.")
# Precompute embeddings for the subset
data = precompute_embeddings(data, model, tokenizer)
# Main App Interface
st.title("Repository Recommender System π")
st.caption("Testing Version - Running on subset of data")
# Main interface
user_query = st.text_area(
"Describe your project:",
height=150,
placeholder="Example: I need a machine learning project for customer churn prediction..."
)
# Search button and filters
col1, col2 = st.columns([2, 1])
with col1:
search_button = st.button("π Search Repositories", type="primary")
with col2:
top_n = st.selectbox("Number of results:", [3, 5, 10], index=1)
if search_button and user_query.strip():
with st.spinner("Finding relevant repositories..."):
# Generate query embedding and get recommendations
query_embedding = generate_query_embedding(model, tokenizer, user_query)
recommendations = find_similar_repos(query_embedding, data, top_n)
# Save to history
st.session_state.history.append({
'query': user_query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': recommendations['repo'].tolist()
})
# Display recommendations using the new function
display_recommendations(recommendations)
# Sidebar for History and Stats
with st.sidebar:
st.header("π Search History")
if st.session_state.history:
for idx, item in enumerate(reversed(st.session_state.history[-5:])):
st.markdown(f"**Search {len(st.session_state.history)-idx}**")
st.markdown(f"Query: _{item['query'][:30]}..._")
st.caption(f"Time: {item['timestamp']}")
st.caption(f"Results: {len(item['results'])} repositories")
if st.button("Rerun this search", key=f"rerun_{idx}"):
st.session_state.rerun_query = item['query']
st.markdown("---")
else:
st.write("No search history yet")
st.header("π Usage Statistics")
st.write(f"Total Searches: {len(st.session_state.history)}")
if st.session_state.feedback:
feedback_df = pd.DataFrame(st.session_state.feedback).T
feedback_df['Total'] = feedback_df['likes'] + feedback_df['dislikes']
st.bar_chart(feedback_df[['likes', 'dislikes']])
# Footer
st.markdown("---")
st.markdown(
"""
Made with π€ using CodeT5 and Streamlit |
"""
) |