Spaces:
Sleeping
Sleeping
File size: 16,345 Bytes
347e3cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
# -*- coding: utf-8 -*-
"""repository_recommender.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1qv09N8Vtcw5vr5NqCSfZonFeh1SQmVW5
"""
pip install pyarrow pandas numpy streamlit gdown torch transformers
import warnings
warnings.filterwarnings('ignore')
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import torch
import gdown
from pathlib import Path
from datetime import datetime
import json
# Initialize session state for history and feedback
if 'search_history' not in st.session_state:
st.session_state.search_history = []
if 'feedback_data' not in st.session_state:
st.session_state.feedback_data = {}
# Model Loading Optimization
class ModelManager:
def __init__(self):
self.model = None
self.tokenizer = None
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
@st.cache_resource
def load_model_and_tokenizer(self):
"""Optimized model loading with device placement"""
model_name = "Salesforce/codet5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name).to(self.device)
model.eval() # Set model to evaluation mode
return tokenizer, model
def get_model_and_tokenizer(self):
if self.model is None or self.tokenizer is None:
self.tokenizer, self.model = self.load_model_and_tokenizer()
return self.tokenizer, self.model
@torch.no_grad() # Disable gradient computation
def generate_embedding(self, text, max_length=512):
"""Optimized embedding generation"""
tokenizer, model = self.get_model_and_tokenizer()
inputs = tokenizer(
text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length
).to(self.device)
outputs = model.encoder(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
return embedding
# Data Management
class DataManager:
@st.cache_resource
def load_dataset():
"""Load and prepare dataset"""
Path("data").mkdir(exist_ok=True)
dataset_path = "/content/drive/MyDrive/practice_ml/filtered_dataset.csv"
if not Path(dataset_path).exists():
with st.spinner('Downloading dataset... This might take a few minutes...'):
url = "/content/drive/MyDrive/practice_ml"
gdown.download(url, dataset_path, quiet=False)
data = pd.read_csv(dataset_path)
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
return data
@st.cache_data
def compute_embeddings(_data, _model_manager):
"""Compute embeddings in batches"""
embeddings = []
batch_size = 32
with st.progress(0) as progress_bar:
for i in range(0, len(_data), batch_size):
batch = _data['text'].iloc[i:i+batch_size]
batch_embeddings = [_model_manager.generate_embedding(text) for text in batch]
embeddings.extend(batch_embeddings)
progress_bar.progress(min((i + batch_size) / len(_data), 1.0))
return embeddings
# History and Feedback Management
def add_to_history(query, recommendations):
"""Add search to history"""
history_entry = {
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'query': query,
'recommendations': recommendations[['repo', 'path', 'url', 'similarity']].to_dict('records')
}
st.session_state.search_history.insert(0, history_entry)
# Keep only last 10 searches
if len(st.session_state.search_history) > 10:
st.session_state.search_history.pop()
def save_feedback(repo_id, feedback_type):
"""Save user feedback"""
if repo_id not in st.session_state.feedback_data:
st.session_state.feedback_data[repo_id] = {'likes': 0, 'dislikes': 0}
if feedback_type == 'like':
st.session_state.feedback_data[repo_id]['likes'] += 1
else:
st.session_state.feedback_data[repo_id]['dislikes'] += 1
def get_recommendations(query, data, model_manager, top_n=5):
"""Get repository recommendations"""
query_embedding = model_manager.generate_embedding(query)
similarities = data['embedding'].apply(
lambda x: cosine_similarity([query_embedding], [x])[0][0]
)
recommendations = data.assign(similarity=similarities)\
.sort_values(by='similarity', ascending=False)\
.head(top_n)
return recommendations
# Streamlit UI
def main():
st.title("Repository Recommender System π")
# Sidebar with history
with st.sidebar:
st.header("Search History π")
if st.session_state.search_history:
for entry in st.session_state.search_history:
with st.expander(f"π {entry['timestamp']}", expanded=False):
st.write(f"Query: {entry['query']}")
for rec in entry['recommendations'][:3]: # Show top 3
st.write(f"- {rec['repo']} ({rec['similarity']:.2%})")
else:
st.info("No search history yet")
# Main interface
st.markdown("""
**Welcome to the Enhanced Repo_Recommender!**
Enter your project description to get personalized repository recommendations.
New features:
- π Search history (check sidebar)
- π Repository feedback
- β‘ Optimized performance
""")
# Initialize managers
model_manager = ModelManager()
data = DataManager.load_dataset()
# Compute embeddings if not already done
if 'embedding' not in data.columns:
data['embedding'] = DataManager.compute_embeddings(data, model_manager)
# User input
user_query = st.text_area(
"Describe your project:",
height=150,
placeholder="Example: I need a machine learning project for customer churn prediction..."
)
# Get recommendations
if st.button("Get Recommendations", type="primary"):
if user_query.strip():
with st.spinner("Finding relevant repositories..."):
recommendations = get_recommendations(user_query, data, model_manager)
add_to_history(user_query, recommendations)
# Display recommendations
st.markdown("### π― Top Recommendations")
for idx, row in recommendations.iterrows():
with st.expander(f"Repository {idx + 1}: {row['repo']}", expanded=True):
cols = st.columns([2, 1])
with cols[0]:
st.markdown(f"**Path:** `{row['path']}`")
st.markdown(f"**Summary:** {row['summary']}")
st.markdown(f"**URL:** [View Repository]({row['url']})")
with cols[1]:
st.metric("Similarity", f"{row['similarity']:.2%}")
# Feedback buttons
feedback_cols = st.columns(2)
repo_id = f"{row['repo']}_{row['path']}"
with feedback_cols[0]:
if st.button("π", key=f"like_{repo_id}"):
save_feedback(repo_id, 'like')
st.success("Thanks for your feedback!")
with feedback_cols[1]:
if st.button("π", key=f"dislike_{repo_id}"):
save_feedback(repo_id, 'dislike')
st.success("Thanks for your feedback!")
# Show feedback stats
if repo_id in st.session_state.feedback_data:
stats = st.session_state.feedback_data[repo_id]
st.write(f"Likes: {stats['likes']} | Dislikes: {stats['dislikes']}")
if row['docstring']:
with st.expander("View Documentation"):
st.markdown(row['docstring'])
else:
st.warning("Please enter a project description.")
# Footer
st.markdown("---")
st.markdown("Made with π€ using CodeT5 and Streamlit")
if __name__ == "__main__":
main()
import warnings
warnings.filterwarnings('ignore')
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import torch
import gdown
from pathlib import Path
from datetime import datetime
# Initialize session state
if 'search_history' not in st.session_state:
st.session_state.search_history = []
if 'feedback_data' not in st.session_state:
st.session_state.feedback_data = {}
# Model Loading Optimization
@st.cache_resource
def load_model_and_tokenizer():
"""Optimized model loading with device placement"""
model_name = "Salesforce/codet5-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = AutoModel.from_pretrained(model_name).to(device)
model.eval() # Set model to evaluation mode
return tokenizer, model, device
@st.cache_resource
def load_dataset():
"""Load and prepare dataset"""
Path("data").mkdir(exist_ok=True)
dataset_path = "/content/drive/MyDrive/practice_ml/filtered_dataset.csv"
if not Path(dataset_path).exists():
with st.spinner('Downloading dataset... This might take a few minutes...'):
url = "/content/drive/MyDrive/practice_ml"
gdown.download(url, dataset_path, quiet=False)
data = pd.read_csv(dataset_path)
data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
return data
@st.cache_data
def generate_embedding(_tokenizer, _model, _device, text, max_length=512):
"""Generate embedding for a single text"""
with torch.no_grad():
inputs = _tokenizer(
text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length
).to(_device)
outputs = _model.encoder(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
return embedding
@st.cache_data
def compute_embeddings(_data, _tokenizer, _model, _device):
"""Compute embeddings in batches"""
embeddings = []
batch_size = 32
texts = _data['text'].tolist()
with st.progress(0) as progress_bar:
progress_container = st.empty()
for i in range(0, len(texts), batch_size):
batch = texts[i:i+batch_size]
batch_embeddings = [
generate_embedding(_tokenizer, _model, _device, text)
for text in batch
]
embeddings.extend(batch_embeddings)
progress_container.progress(min((i + batch_size) / len(texts), 1.0))
return embeddings
def add_to_history(query, recommendations):
"""Add search to history"""
history_entry = {
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'query': query,
'recommendations': recommendations[['repo', 'path', 'url', 'similarity']].to_dict('records')
}
st.session_state.search_history.insert(0, history_entry)
if len(st.session_state.search_history) > 10:
st.session_state.search_history.pop()
def save_feedback(repo_id, feedback_type):
"""Save user feedback"""
if repo_id not in st.session_state.feedback_data:
st.session_state.feedback_data[repo_id] = {'likes': 0, 'dislikes': 0}
if feedback_type == 'like':
st.session_state.feedback_data[repo_id]['likes'] += 1
else:
st.session_state.feedback_data[repo_id]['dislikes'] += 1
def get_recommendations(query, data, tokenizer, model, device, top_n=5):
"""Get repository recommendations"""
query_embedding = generate_embedding(tokenizer, model, device, query)
similarities = []
for emb in data['embedding']:
sim = cosine_similarity([query_embedding], [emb])[0][0]
similarities.append(sim)
recommendations = data.assign(similarity=similarities)\
.sort_values(by='similarity', ascending=False)\
.head(top_n)
return recommendations
def main():
st.title("Repository Recommender System π")
# Sidebar with history
with st.sidebar:
st.header("Search History π")
if st.session_state.search_history:
for entry in st.session_state.search_history:
with st.expander(f"π {entry['timestamp']}", expanded=False):
st.write(f"Query: {entry['query']}")
for rec in entry['recommendations'][:3]:
st.write(f"- {rec['repo']} ({rec['similarity']:.2%})")
else:
st.info("No search history yet")
st.markdown("""
**Welcome to the Enhanced Repo_Recommender!**
Enter your project description to get personalized repository recommendations.
New features:
- π Search history (check sidebar)
- π Repository feedback
- β‘ Optimized performance
""")
# Load resources
with st.spinner("Loading model and data..."):
tokenizer, model, device = load_model_and_tokenizer()
data = load_dataset()
# Compute embeddings if not already done
if 'embedding' not in data.columns:
data['embedding'] = compute_embeddings(data, tokenizer, model, device)
# User input
user_query = st.text_area(
"Describe your project:",
height=150,
placeholder="Example: I need a machine learning project for customer churn prediction..."
)
# Get recommendations
if st.button("Get Recommendations", type="primary"):
if user_query.strip():
with st.spinner("Finding relevant repositories..."):
recommendations = get_recommendations(
user_query, data, tokenizer, model, device
)
add_to_history(user_query, recommendations)
# Display recommendations
st.markdown("### π― Top Recommendations")
for idx, row in recommendations.iterrows():
with st.expander(f"Repository {idx + 1}: {row['repo']}", expanded=True):
cols = st.columns([2, 1])
with cols[0]:
st.markdown(f"**Path:** `{row['path']}`")
st.markdown(f"**Summary:** {row['summary']}")
st.markdown(f"**URL:** [View Repository]({row['url']})")
with cols[1]:
st.metric("Similarity", f"{row['similarity']:.2%}")
# Feedback buttons
feedback_cols = st.columns(2)
repo_id = f"{row['repo']}_{row['path']}"
with feedback_cols[0]:
if st.button("π", key=f"like_{repo_id}"):
save_feedback(repo_id, 'like')
st.success("Thanks for your feedback!")
with feedback_cols[1]:
if st.button("π", key=f"dislike_{repo_id}"):
save_feedback(repo_id, 'dislike')
st.success("Thanks for your feedback!")
# Show feedback stats
if repo_id in st.session_state.feedback_data:
stats = st.session_state.feedback_data[repo_id]
st.write(f"Likes: {stats['likes']} | Dislikes: {stats['dislikes']}")
if row['docstring']:
with st.expander("View Documentation"):
st.markdown(row['docstring'])
else:
st.warning("Please enter a project description.")
# Footer
st.markdown("---")
st.markdown("Made with π€ using CodeT5 and Streamlit")
if __name__ == "__main__":
main() |