File size: 16,345 Bytes
347e3cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# -*- coding: utf-8 -*-
"""repository_recommender.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1qv09N8Vtcw5vr5NqCSfZonFeh1SQmVW5
"""

pip install pyarrow pandas numpy streamlit gdown torch transformers

import warnings
warnings.filterwarnings('ignore')

import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import torch
import gdown
from pathlib import Path
from datetime import datetime
import json

# Initialize session state for history and feedback
if 'search_history' not in st.session_state:
    st.session_state.search_history = []
if 'feedback_data' not in st.session_state:
    st.session_state.feedback_data = {}

# Model Loading Optimization
class ModelManager:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    @st.cache_resource
    def load_model_and_tokenizer(self):
        """Optimized model loading with device placement"""
        model_name = "Salesforce/codet5-small"
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModel.from_pretrained(model_name).to(self.device)
        model.eval()  # Set model to evaluation mode
        return tokenizer, model

    def get_model_and_tokenizer(self):
        if self.model is None or self.tokenizer is None:
            self.tokenizer, self.model = self.load_model_and_tokenizer()
        return self.tokenizer, self.model

    @torch.no_grad()  # Disable gradient computation
    def generate_embedding(self, text, max_length=512):
        """Optimized embedding generation"""
        tokenizer, model = self.get_model_and_tokenizer()
        inputs = tokenizer(
            text,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=max_length
        ).to(self.device)

        outputs = model.encoder(**inputs)
        embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
        return embedding

# Data Management
class DataManager:
    @st.cache_resource
    def load_dataset():
        """Load and prepare dataset"""
        Path("data").mkdir(exist_ok=True)
        dataset_path = "/content/drive/MyDrive/practice_ml/filtered_dataset.csv"

        if not Path(dataset_path).exists():
            with st.spinner('Downloading dataset... This might take a few minutes...'):
                url = "/content/drive/MyDrive/practice_ml"
                gdown.download(url, dataset_path, quiet=False)

        data = pd.read_csv(dataset_path)
        data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
        return data

    @st.cache_data
    def compute_embeddings(_data, _model_manager):
        """Compute embeddings in batches"""
        embeddings = []
        batch_size = 32

        with st.progress(0) as progress_bar:
            for i in range(0, len(_data), batch_size):
                batch = _data['text'].iloc[i:i+batch_size]
                batch_embeddings = [_model_manager.generate_embedding(text) for text in batch]
                embeddings.extend(batch_embeddings)
                progress_bar.progress(min((i + batch_size) / len(_data), 1.0))

        return embeddings

# History and Feedback Management
def add_to_history(query, recommendations):
    """Add search to history"""
    history_entry = {
        'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
        'query': query,
        'recommendations': recommendations[['repo', 'path', 'url', 'similarity']].to_dict('records')
    }
    st.session_state.search_history.insert(0, history_entry)

    # Keep only last 10 searches
    if len(st.session_state.search_history) > 10:
        st.session_state.search_history.pop()

def save_feedback(repo_id, feedback_type):
    """Save user feedback"""
    if repo_id not in st.session_state.feedback_data:
        st.session_state.feedback_data[repo_id] = {'likes': 0, 'dislikes': 0}

    if feedback_type == 'like':
        st.session_state.feedback_data[repo_id]['likes'] += 1
    else:
        st.session_state.feedback_data[repo_id]['dislikes'] += 1

def get_recommendations(query, data, model_manager, top_n=5):
    """Get repository recommendations"""
    query_embedding = model_manager.generate_embedding(query)
    similarities = data['embedding'].apply(
        lambda x: cosine_similarity([query_embedding], [x])[0][0]
    )
    recommendations = data.assign(similarity=similarities)\
        .sort_values(by='similarity', ascending=False)\
        .head(top_n)
    return recommendations

# Streamlit UI
def main():
    st.title("Repository Recommender System πŸš€")

    # Sidebar with history
    with st.sidebar:
        st.header("Search History πŸ“œ")
        if st.session_state.search_history:
            for entry in st.session_state.search_history:
                with st.expander(f"πŸ” {entry['timestamp']}", expanded=False):
                    st.write(f"Query: {entry['query']}")
                    for rec in entry['recommendations'][:3]:  # Show top 3
                        st.write(f"- {rec['repo']} ({rec['similarity']:.2%})")
        else:
            st.info("No search history yet")

    # Main interface
    st.markdown("""
        **Welcome to the Enhanced Repo_Recommender!**

        Enter your project description to get personalized repository recommendations.
        New features:
        - πŸ“œ Search history (check sidebar)
        - πŸ‘ Repository feedback
        - ⚑ Optimized performance
    """)

    # Initialize managers
    model_manager = ModelManager()
    data = DataManager.load_dataset()

    # Compute embeddings if not already done
    if 'embedding' not in data.columns:
        data['embedding'] = DataManager.compute_embeddings(data, model_manager)

    # User input
    user_query = st.text_area(
        "Describe your project:",
        height=150,
        placeholder="Example: I need a machine learning project for customer churn prediction..."
    )

    # Get recommendations
    if st.button("Get Recommendations", type="primary"):
        if user_query.strip():
            with st.spinner("Finding relevant repositories..."):
                recommendations = get_recommendations(user_query, data, model_manager)
                add_to_history(user_query, recommendations)

            # Display recommendations
            st.markdown("### 🎯 Top Recommendations")
            for idx, row in recommendations.iterrows():
                with st.expander(f"Repository {idx + 1}: {row['repo']}", expanded=True):
                    cols = st.columns([2, 1])
                    with cols[0]:
                        st.markdown(f"**Path:** `{row['path']}`")
                        st.markdown(f"**Summary:** {row['summary']}")
                        st.markdown(f"**URL:** [View Repository]({row['url']})")
                    with cols[1]:
                        st.metric("Similarity", f"{row['similarity']:.2%}")

                        # Feedback buttons
                        feedback_cols = st.columns(2)
                        repo_id = f"{row['repo']}_{row['path']}"

                        with feedback_cols[0]:
                            if st.button("πŸ‘", key=f"like_{repo_id}"):
                                save_feedback(repo_id, 'like')
                                st.success("Thanks for your feedback!")

                        with feedback_cols[1]:
                            if st.button("πŸ‘Ž", key=f"dislike_{repo_id}"):
                                save_feedback(repo_id, 'dislike')
                                st.success("Thanks for your feedback!")

                        # Show feedback stats
                        if repo_id in st.session_state.feedback_data:
                            stats = st.session_state.feedback_data[repo_id]
                            st.write(f"Likes: {stats['likes']} | Dislikes: {stats['dislikes']}")

                    if row['docstring']:
                        with st.expander("View Documentation"):
                            st.markdown(row['docstring'])
        else:
            st.warning("Please enter a project description.")

    # Footer
    st.markdown("---")
    st.markdown("Made with πŸ€– using CodeT5 and Streamlit")

if __name__ == "__main__":
    main()

import warnings
warnings.filterwarnings('ignore')

import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import torch
import gdown
from pathlib import Path
from datetime import datetime

# Initialize session state
if 'search_history' not in st.session_state:
    st.session_state.search_history = []
if 'feedback_data' not in st.session_state:
    st.session_state.feedback_data = {}

# Model Loading Optimization
@st.cache_resource
def load_model_and_tokenizer():
    """Optimized model loading with device placement"""
    model_name = "Salesforce/codet5-small"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = AutoModel.from_pretrained(model_name).to(device)
    model.eval()  # Set model to evaluation mode
    return tokenizer, model, device

@st.cache_resource
def load_dataset():
    """Load and prepare dataset"""
    Path("data").mkdir(exist_ok=True)
    dataset_path = "/content/drive/MyDrive/practice_ml/filtered_dataset.csv"

    if not Path(dataset_path).exists():
        with st.spinner('Downloading dataset... This might take a few minutes...'):
            url = "/content/drive/MyDrive/practice_ml"
            gdown.download(url, dataset_path, quiet=False)

    data = pd.read_csv(dataset_path)
    data['text'] = data['docstring'].fillna('') + ' ' + data['summary'].fillna('')
    return data

@st.cache_data
def generate_embedding(_tokenizer, _model, _device, text, max_length=512):
    """Generate embedding for a single text"""
    with torch.no_grad():
        inputs = _tokenizer(
            text,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=max_length
        ).to(_device)

        outputs = _model.encoder(**inputs)
        embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
    return embedding

@st.cache_data
def compute_embeddings(_data, _tokenizer, _model, _device):
    """Compute embeddings in batches"""
    embeddings = []
    batch_size = 32
    texts = _data['text'].tolist()

    with st.progress(0) as progress_bar:
        progress_container = st.empty()
        for i in range(0, len(texts), batch_size):
            batch = texts[i:i+batch_size]
            batch_embeddings = [
                generate_embedding(_tokenizer, _model, _device, text)
                for text in batch
            ]
            embeddings.extend(batch_embeddings)
            progress_container.progress(min((i + batch_size) / len(texts), 1.0))

    return embeddings

def add_to_history(query, recommendations):
    """Add search to history"""
    history_entry = {
        'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
        'query': query,
        'recommendations': recommendations[['repo', 'path', 'url', 'similarity']].to_dict('records')
    }
    st.session_state.search_history.insert(0, history_entry)
    if len(st.session_state.search_history) > 10:
        st.session_state.search_history.pop()

def save_feedback(repo_id, feedback_type):
    """Save user feedback"""
    if repo_id not in st.session_state.feedback_data:
        st.session_state.feedback_data[repo_id] = {'likes': 0, 'dislikes': 0}

    if feedback_type == 'like':
        st.session_state.feedback_data[repo_id]['likes'] += 1
    else:
        st.session_state.feedback_data[repo_id]['dislikes'] += 1

def get_recommendations(query, data, tokenizer, model, device, top_n=5):
    """Get repository recommendations"""
    query_embedding = generate_embedding(tokenizer, model, device, query)

    similarities = []
    for emb in data['embedding']:
        sim = cosine_similarity([query_embedding], [emb])[0][0]
        similarities.append(sim)

    recommendations = data.assign(similarity=similarities)\
        .sort_values(by='similarity', ascending=False)\
        .head(top_n)
    return recommendations

def main():
    st.title("Repository Recommender System πŸš€")

    # Sidebar with history
    with st.sidebar:
        st.header("Search History πŸ“œ")
        if st.session_state.search_history:
            for entry in st.session_state.search_history:
                with st.expander(f"πŸ” {entry['timestamp']}", expanded=False):
                    st.write(f"Query: {entry['query']}")
                    for rec in entry['recommendations'][:3]:
                        st.write(f"- {rec['repo']} ({rec['similarity']:.2%})")
        else:
            st.info("No search history yet")

    st.markdown("""
        **Welcome to the Enhanced Repo_Recommender!**

        Enter your project description to get personalized repository recommendations.
        New features:
        - πŸ“œ Search history (check sidebar)
        - πŸ‘ Repository feedback
        - ⚑ Optimized performance
    """)

    # Load resources
    with st.spinner("Loading model and data..."):
        tokenizer, model, device = load_model_and_tokenizer()
        data = load_dataset()

        # Compute embeddings if not already done
        if 'embedding' not in data.columns:
            data['embedding'] = compute_embeddings(data, tokenizer, model, device)

    # User input
    user_query = st.text_area(
        "Describe your project:",
        height=150,
        placeholder="Example: I need a machine learning project for customer churn prediction..."
    )

    # Get recommendations
    if st.button("Get Recommendations", type="primary"):
        if user_query.strip():
            with st.spinner("Finding relevant repositories..."):
                recommendations = get_recommendations(
                    user_query, data, tokenizer, model, device
                )
                add_to_history(user_query, recommendations)

            # Display recommendations
            st.markdown("### 🎯 Top Recommendations")
            for idx, row in recommendations.iterrows():
                with st.expander(f"Repository {idx + 1}: {row['repo']}", expanded=True):
                    cols = st.columns([2, 1])
                    with cols[0]:
                        st.markdown(f"**Path:** `{row['path']}`")
                        st.markdown(f"**Summary:** {row['summary']}")
                        st.markdown(f"**URL:** [View Repository]({row['url']})")
                    with cols[1]:
                        st.metric("Similarity", f"{row['similarity']:.2%}")

                        # Feedback buttons
                        feedback_cols = st.columns(2)
                        repo_id = f"{row['repo']}_{row['path']}"

                        with feedback_cols[0]:
                            if st.button("πŸ‘", key=f"like_{repo_id}"):
                                save_feedback(repo_id, 'like')
                                st.success("Thanks for your feedback!")

                        with feedback_cols[1]:
                            if st.button("πŸ‘Ž", key=f"dislike_{repo_id}"):
                                save_feedback(repo_id, 'dislike')
                                st.success("Thanks for your feedback!")

                        # Show feedback stats
                        if repo_id in st.session_state.feedback_data:
                            stats = st.session_state.feedback_data[repo_id]
                            st.write(f"Likes: {stats['likes']} | Dislikes: {stats['dislikes']}")

                    if row['docstring']:
                        with st.expander("View Documentation"):
                            st.markdown(row['docstring'])
        else:
            st.warning("Please enter a project description.")

    # Footer
    st.markdown("---")
    st.markdown("Made with πŸ€– using CodeT5 and Streamlit")

if __name__ == "__main__":
    main()