Spaces:
Runtime error
Runtime error
import os | |
import sys | |
os.system('git clone https://github.com/facebookresearch/av_hubert.git') | |
os.chdir('/home/user/app/av_hubert') | |
sys.path.append('/home/user/app/av_hubert/avhubert') | |
print(sys.path) | |
print(os.listdir()) | |
print(sys.argv, type(sys.argv)) | |
sys.argv.append('dummy') | |
import dlib, cv2, os | |
import numpy as np | |
import skvideo | |
import skvideo.io | |
from tqdm import tqdm | |
from preparation.align_mouth import landmarks_interpolate, crop_patch, write_video_ffmpeg | |
from base64 import b64encode | |
import torch | |
import cv2 | |
import tempfile | |
from argparse import Namespace | |
import fairseq | |
from fairseq import checkpoint_utils, options, tasks, utils | |
from fairseq.dataclass.configs import GenerationConfig | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
from pytube import YouTube | |
user_dir = "/home/user/app/av_hubert/avhubert" | |
utils.import_user_module(Namespace(user_dir=user_dir)) | |
data_dir = "/home/user/app/video" | |
ckpt_path = hf_hub_download('vumichien/AV-HuBERT', 'model.pt') | |
face_detector_path = "/home/user/app/mmod_human_face_detector.dat" | |
face_predictor_path = "/home/user/app/shape_predictor_68_face_landmarks.dat" | |
mean_face_path = "/home/user/app/20words_mean_face.npy" | |
mouth_roi_path = "/home/user/app/roi.mp4" | |
modalities = ["video"] | |
gen_subset = "test" | |
gen_cfg = GenerationConfig(beam=20) | |
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([ckpt_path]) | |
models = [model.eval().cuda() if torch.cuda.is_available() else model.eval() for model in models] | |
saved_cfg.task.modalities = modalities | |
saved_cfg.task.data = data_dir | |
saved_cfg.task.label_dir = data_dir | |
task = tasks.setup_task(saved_cfg.task) | |
generator = task.build_generator(models, gen_cfg) | |
def get_youtube(video_url): | |
yt = YouTube(video_url) | |
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download() | |
print("Success download video") | |
print(abs_video_path) | |
return abs_video_path | |
def detect_landmark(image, detector, predictor): | |
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
face_locations = detector(gray, 1) | |
coords = None | |
for (_, face_location) in enumerate(face_locations): | |
if torch.cuda.is_available(): | |
rect = face_location.rect | |
else: | |
rect = face_location | |
shape = predictor(gray, rect) | |
coords = np.zeros((68, 2), dtype=np.int32) | |
for i in range(0, 68): | |
coords[i] = (shape.part(i).x, shape.part(i).y) | |
return coords | |
def preprocess_video(input_video_path, input_start): | |
if torch.cuda.is_available(): | |
detector = dlib.cnn_face_detection_model_v1(face_detector_path) | |
else: | |
detector = dlib.get_frontal_face_detector() | |
predictor = dlib.shape_predictor(face_predictor_path) | |
STD_SIZE = (256, 256) | |
mean_face_landmarks = np.load(mean_face_path) | |
stablePntsIDs = [33, 36, 39, 42, 45] | |
videogen = skvideo.io.vread(input_video_path, inputdict={'-ss': str(input_start), '-t': '10'}) | |
frames = np.array([frame for frame in videogen]) | |
landmarks = [] | |
for frame in tqdm(frames): | |
landmark = detect_landmark(frame, detector, predictor) | |
landmarks.append(landmark) | |
preprocessed_landmarks = landmarks_interpolate(landmarks) | |
rois = crop_patch(input_video_path, preprocessed_landmarks, mean_face_landmarks, stablePntsIDs, STD_SIZE, | |
window_margin=12, start_idx=48, stop_idx=68, crop_height=96, crop_width=96) | |
write_video_ffmpeg(rois, mouth_roi_path, "/usr/bin/ffmpeg") | |
return mouth_roi_path | |
def predict(process_video): | |
num_frames = int(cv2.VideoCapture(process_video).get(cv2.CAP_PROP_FRAME_COUNT)) | |
tsv_cont = ["/\n", f"test-0\t{process_video}\t{None}\t{num_frames}\t{int(16_000*num_frames/25)}\n"] | |
label_cont = ["DUMMY\n"] | |
with open(f"{data_dir}/test.tsv", "w") as fo: | |
fo.write("".join(tsv_cont)) | |
with open(f"{data_dir}/test.wrd", "w") as fo: | |
fo.write("".join(label_cont)) | |
task.load_dataset(gen_subset, task_cfg=saved_cfg.task) | |
def decode_fn(x): | |
dictionary = task.target_dictionary | |
symbols_ignore = generator.symbols_to_strip_from_output | |
symbols_ignore.add(dictionary.pad()) | |
return task.datasets[gen_subset].label_processors[0].decode(x, symbols_ignore) | |
itr = task.get_batch_iterator(dataset=task.dataset(gen_subset)).next_epoch_itr(shuffle=False) | |
sample = next(itr) | |
if torch.cuda.is_available(): | |
sample = utils.move_to_cuda(sample) | |
hypos = task.inference_step(generator, models, sample) | |
ref = decode_fn(sample['target'][0].int().cpu()) | |
hypo = hypos[0][0]['tokens'].int().cpu() | |
hypo = decode_fn(hypo) | |
return hypo | |
# ---- Gradio Layout ----- | |
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True) | |
video_in = gr.Video(label="Input Video", mirror_webcam=False, interactive=True) | |
video_start_in = gr.Number(label="Start Time in Seconds", value=0, interactive=True) | |
video_out = gr.Video(label="Audio Visual Video", mirror_webcam=False, interactive=True) | |
demo = gr.Blocks() | |
demo.encrypt = False | |
text_output = gr.Textbox() | |
with demo: | |
gr.Markdown(''' | |
<div> | |
<h1 style='text-align: center'>Speech Recognition from Visual Lip Movement by Audio-Visual Hidden Unit BERT Model (AV-HuBERT)</h1> | |
This space uses AV-HuBERT models from <a href='https://github.com/facebookresearch' target='_blank'><b>Meta Research</b></a> to recoginze the speech from Lip Movement 🤗 | |
<figure> | |
<img src="https://huggingface.co/vumichien/AV-HuBERT/resolve/main/lipreading.gif" alt="Audio-Visual Speech Recognition"> | |
<figcaption> Speech Recognition from visual lip movement | |
</figcaption> | |
</figure> | |
</div> | |
''') | |
with gr.Row(): | |
gr.Markdown(''' | |
### Reading Lip movement with youtube link using Avhubert | |
##### Step 1a. Download video from youtube (Note: Only 10 seconds will be analyzed and the face should be stable for better result) | |
##### Step 1b. You also can upload video directly | |
##### Step 2. Generating landmarks surrounding mouth area | |
##### Step 3. Reading lip movement. | |
''') | |
with gr.Row(): | |
gr.Markdown(''' | |
### You can test by following examples: | |
''') | |
examples = gr.Examples(examples= | |
[ "https://www.youtube.com/watch?v=ZXVDnuepW2s", | |
"https://www.youtube.com/watch?v=X8_glJn1B8o", | |
"https://www.youtube.com/watch?v=80yqL2KzBVw"], | |
label="Examples", inputs=[youtube_url_in]) | |
with gr.Column(): | |
youtube_url_in.render() | |
video_start_in.render() | |
download_youtube_btn = gr.Button("Download Youtube video") | |
download_youtube_btn.click(get_youtube, [youtube_url_in], [video_in]) | |
print(video_in) | |
with gr.Row(): | |
video_in.render() | |
video_out.render() | |
with gr.Row(): | |
detect_landmark_btn = gr.Button("Detect landmark") | |
detect_landmark_btn.click(preprocess_video, [video_in, video_start_in], [video_out]) | |
predict_btn = gr.Button("Predict") | |
predict_btn.click(predict, [video_out], [text_output]) | |
with gr.Row(): | |
# video_lip = gr.Video(label="Audio Visual Video", mirror_webcam=False) | |
text_output.render() | |
demo.launch(debug=True) |