Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,110 +1,129 @@
|
|
1 |
-
import os
|
2 |
-
import nest_asyncio
|
3 |
-
nest_asyncio.apply()
|
4 |
-
import streamlit as st
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from
|
|
|
|
|
8 |
|
9 |
# Retrieve the token from environment variables
|
10 |
-
hf_token = os.environ.get("HF_TOKEN")
|
11 |
-
if not hf_token:
|
12 |
-
st.error("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
13 |
-
st.stop()
|
14 |
|
15 |
# Login with the token
|
16 |
-
login(token=hf_token)
|
17 |
|
18 |
# Initialize session state for timer and results
|
19 |
-
if 'result' not in st.session_state:
|
20 |
-
st.session_state.result = {}
|
21 |
-
if 'timer_started' not in st.session_state:
|
22 |
-
st.session_state.timer_started = False
|
23 |
-
if 'timer_frozen' not in st.session_state:
|
24 |
-
st.session_state.timer_frozen = False
|
25 |
|
26 |
# Timer component using HTML and JavaScript
|
27 |
-
def timer():
|
28 |
-
return """
|
29 |
-
<div id="timer" style="font-size:16px;color:#666;margin-bottom:10px;">β±οΈ Elapsed: 00:00</div>
|
30 |
-
<script>
|
31 |
-
(function() {
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
})();
|
49 |
-
</script>
|
50 |
-
"""
|
51 |
|
52 |
-
st.set_page_config(page_title="Sentiment & Report Generator", page_icon="π")
|
53 |
-
st.header("Sentiment Analysis & Report Generation with Gemma")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
# Load models with caching to avoid reloading on every run
|
56 |
-
@st.cache_resource
|
57 |
-
def load_models():
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
|
63 |
|
64 |
-
# Provide two options for input:
|
65 |
-
uploaded_file = st.file_uploader("Upload Review File (
|
66 |
user_input = st.text_area("Or, enter your text for sentiment analysis and report generation:")
|
67 |
|
68 |
-
# If a file is uploaded, override user_input with its contents
|
69 |
if uploaded_file is not None:
|
70 |
try:
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
except Exception as e:
|
73 |
st.error(f"Error reading file: {e}")
|
74 |
|
75 |
-
if st.button("Generate Report"):
|
76 |
-
if not user_input.strip():
|
77 |
st.error("Please enter some text!")
|
78 |
-
else:
|
79 |
-
if not st.session_state.timer_started and not st.session_state.timer_frozen:
|
80 |
-
st.session_state.timer_started = True
|
81 |
-
html(timer(), height=50)
|
82 |
-
status_text = st.empty()
|
83 |
-
progress_bar = st.progress(0)
|
84 |
-
try:
|
85 |
-
# Stage 1: Sentiment Analysis
|
86 |
-
status_text.markdown("**π Running sentiment analysis...**")
|
87 |
-
progress_bar.progress(0)
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
"
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
110 |
progress_bar.empty()
|
|
|
1 |
+
import os
|
2 |
+
import nest_asyncio
|
3 |
+
nest_asyncio.apply()
|
4 |
+
import streamlit as st
|
5 |
+
from sentence_transformers import CrossEncoder
|
6 |
+
from transformers import pipeline
|
7 |
+
from huggingface_hub import login
|
8 |
+
from streamlit.components.v1 import html
|
9 |
+
import pandas as pd
|
10 |
|
11 |
# Retrieve the token from environment variables
|
12 |
+
hf_token = os.environ.get("HF_TOKEN")
|
13 |
+
if not hf_token:
|
14 |
+
st.error("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
15 |
+
st.stop()
|
16 |
|
17 |
# Login with the token
|
18 |
+
login(token=hf_token)
|
19 |
|
20 |
# Initialize session state for timer and results
|
21 |
+
if 'result' not in st.session_state:
|
22 |
+
st.session_state.result = {}
|
23 |
+
if 'timer_started' not in st.session_state:
|
24 |
+
st.session_state.timer_started = False
|
25 |
+
if 'timer_frozen' not in st.session_state:
|
26 |
+
st.session_state.timer_frozen = False
|
27 |
|
28 |
# Timer component using HTML and JavaScript
|
29 |
+
def timer():
|
30 |
+
return """
|
31 |
+
<div id="timer" style="font-size:16px;color:#666;margin-bottom:10px;">β±οΈ Elapsed: 00:00</div>
|
32 |
+
<script>
|
33 |
+
(function() {
|
34 |
+
var start = Date.now();
|
35 |
+
var timerElement = document.getElementById('timer');
|
36 |
+
localStorage.removeItem("freezeTimer");
|
37 |
+
var interval = setInterval(function() {
|
38 |
+
if(localStorage.getItem("freezeTimer") === "true"){
|
39 |
+
clearInterval(interval);
|
40 |
+
timerElement.style.color = '#00cc00';
|
41 |
+
return;
|
42 |
+
}
|
43 |
+
var elapsed = Date.now() - start;
|
44 |
+
var minutes = Math.floor(elapsed / 60000);
|
45 |
+
var seconds = Math.floor((elapsed % 60000) / 1000);
|
46 |
+
timerElement.innerHTML = 'β±οΈ Elapsed: ' +
|
47 |
+
(minutes < 10 ? '0' : '') + minutes + ':' +
|
48 |
+
(seconds < 10 ? '0' : '') + seconds;
|
49 |
+
}, 1000);
|
50 |
+
})();
|
51 |
+
</script>
|
52 |
+
"""
|
53 |
|
54 |
+
st.set_page_config(page_title="Sentiment & Report Generator", page_icon="π")
|
55 |
+
st.header("Sentiment Analysis & Report Generation with Gemma")
|
56 |
+
|
57 |
+
# Introduction for the Hugging Face interface
|
58 |
+
st.write("""
|
59 |
+
Welcome to the Sentiment Analysis & Report Generator app!
|
60 |
+
This tool leverages Hugging Face's models to analyze the sentiment of your text and generate a detailed report explaining the key insights.
|
61 |
+
You can either paste your review text directly into the text area or upload a CSV file containing your reviews.
|
62 |
+
""")
|
63 |
|
64 |
# Load models with caching to avoid reloading on every run
|
65 |
+
@st.cache_resource
|
66 |
+
def load_models():
|
67 |
+
# Load the sentiment model (CrossEncoder) for ranking sentiment labels.
|
68 |
+
sentiment_model = CrossEncoder("mixedbread-ai/mxbai-rerank-base-v1")
|
69 |
+
# Load the Gemma text generation pipeline.
|
70 |
+
gemma_pipe = pipeline("text-generation", model="google/gemma-3-1b-it", use_auth_token=hf_token)
|
71 |
+
return sentiment_model, gemma_pipe
|
72 |
|
73 |
+
sentiment_model, gemma_pipe = load_models()
|
74 |
|
75 |
+
# Provide two options for input: file upload (CSV) or text area
|
76 |
+
uploaded_file = st.file_uploader("Upload Review File (CSV format)", type=["csv"])
|
77 |
user_input = st.text_area("Or, enter your text for sentiment analysis and report generation:")
|
78 |
|
|
|
79 |
if uploaded_file is not None:
|
80 |
try:
|
81 |
+
# Read the CSV file; if a column named 'review' exists, use it.
|
82 |
+
df = pd.read_csv(uploaded_file)
|
83 |
+
if 'review' in df.columns:
|
84 |
+
user_input = " ".join(df['review'].astype(str).tolist())
|
85 |
+
else:
|
86 |
+
# Otherwise, join all text from the first column.
|
87 |
+
user_input = " ".join(df.iloc[:, 0].astype(str).tolist())
|
88 |
except Exception as e:
|
89 |
st.error(f"Error reading file: {e}")
|
90 |
|
91 |
+
if st.button("Generate Report"):
|
92 |
+
if not user_input.strip():
|
93 |
st.error("Please enter some text!")
|
94 |
+
else:
|
95 |
+
if not st.session_state.timer_started and not st.session_state.timer_frozen:
|
96 |
+
st.session_state.timer_started = True
|
97 |
+
html(timer(), height=50)
|
98 |
+
status_text = st.empty()
|
99 |
+
progress_bar = st.progress(0)
|
100 |
+
try:
|
101 |
+
# Stage 1: Sentiment Analysis using CrossEncoder ranking
|
102 |
+
status_text.markdown("**π Running sentiment analysis...**")
|
103 |
+
progress_bar.progress(0)
|
104 |
+
# Use sentiment analysis as ranking over sentiment labels.
|
105 |
+
labels = ["positive", "neutral", "negative"]
|
106 |
+
sentiment_result = sentiment_model.rank(user_input, labels, return_documents=True, top_k=1)
|
107 |
+
progress_bar.progress(50)
|
108 |
+
|
109 |
+
# Stage 2: Generate Report using Gemma
|
110 |
+
status_text.markdown("**π Generating report with Gemma...**")
|
111 |
+
prompt = f"""
|
112 |
+
Generate a detailed report based on the following analysis.
|
113 |
+
Original text:
|
114 |
+
"{user_input}"
|
115 |
+
Sentiment analysis result:
|
116 |
+
{sentiment_result}
|
117 |
+
Please provide a concise summary report explaining the sentiment and key insights.
|
118 |
+
"""
|
119 |
+
report = gemma_pipe(prompt, max_length=200)
|
120 |
+
progress_bar.progress(100)
|
121 |
+
status_text.success("**β
Generation complete!**")
|
122 |
+
html("<script>localStorage.setItem('freezeTimer', 'true');</script>", height=0)
|
123 |
+
st.session_state.timer_frozen = True
|
124 |
+
st.write("**Sentiment Analysis Result:**", sentiment_result)
|
125 |
+
st.write("**Generated Report:**", report[0]['generated_text'])
|
126 |
+
except Exception as e:
|
127 |
+
html("<script>document.getElementById('timer').remove();</script>")
|
128 |
+
status_text.error(f"**β Error:** {str(e)}")
|
129 |
progress_bar.empty()
|