Spaces:
Sleeping
Sleeping
File size: 9,621 Bytes
91eb9f9 503f042 91eb9f9 7fc6144 4e6ae40 8b9bf01 6c1e788 d9a35fb 8b9bf01 6c1e788 d9a35fb 5ab1c08 9c4bbfa 9ba919a 8b9bf01 6c1e788 91eb9f9 2382fa5 9c4bbfa 91eb9f9 9c4bbfa 503f042 2382fa5 6c1e788 a4c7cd3 91eb9f9 549832e 9ba919a 549832e 0c389c7 503f042 549832e 9ba919a 549832e 9ba919a 549832e 503f042 549832e 503f042 549832e 9ba919a 549832e 9c4bbfa 2382fa5 503f042 9ba919a 9c4bbfa 2382fa5 503f042 9c4bbfa 78f714f 2382fa5 9ba919a 91eb9f9 9ba919a 91eb9f9 9ba919a 1d9c203 5e679fe 1d9c203 4e6ae40 ee46d7b 4e6ae40 d47f4f6 1d9c203 d47f4f6 1d9c203 5e679fe 1d9c203 4e6ae40 5e679fe 52b9eb2 baf5aeb 5e679fe 503f042 1d9c203 fd87044 503f042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import nest_asyncio
nest_asyncio.apply()
import streamlit as st
from transformers import pipeline, AutoTokenizer
from huggingface_hub import login
from streamlit.components.v1 import html
import pandas as pd
import torch
import random
# Retrieve the token from environment variables
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
st.error("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
st.stop()
# Login with the token
login(token=hf_token)
# Initialize session state for timer
#if 'timer_started' not in st.session_state:
#st.session_state.timer_started = False
#if 'timer_frozen' not in st.session_state:
#st.session_state.timer_frozen = False
# Timer component using HTML and JavaScript
def timer():
return """
<div id="timer" style="font-size:16px;color:#666;margin-bottom:10px;">β±οΈ Elapsed: 00:00</div>
<script>
(function() {
var start = Date.now();
var timerElement = document.getElementById('timer');
localStorage.removeItem("freezeTimer");
var interval = setInterval(function() {
if(localStorage.getItem("freezeTimer") === "true"){
clearInterval(interval);
timerElement.style.color = '#00cc00';
return;
}
var elapsed = Date.now() - start;
var minutes = Math.floor(elapsed / 60000);
var seconds = Math.floor((elapsed % 60000) / 1000);
timerElement.innerHTML = 'β±οΈ Elapsed: ' +
(minutes < 10 ? '0' : '') + minutes + ':' +
(seconds < 10 ? '0' : '') + seconds;
}, 1000);
})();
</script>
"""
st.set_page_config(page_title="Review Scorer & Report Generator", page_icon="π")
st.header("Review Scorer & Report Generator")
# Concise introduction
st.write("This model will score your reviews in your CSV file and generate a report based on your query and those results.")
# Load models with caching to avoid reloading on every run
@st.cache_resource
def load_models():
score_pipe = None
gemma_pipe = None
try:
st.info("Loading sentiment analysis model...")
score_pipe = pipeline("text-classification",
model="cardiffnlp/twitter-roberta-base-sentiment-latest",
device=0 if torch.cuda.is_available() else -1)
st.success("Sentiment analysis model loaded successfully!")
except Exception as e:
st.error(f"Error loading score model: {e}")
try:
st.info("Loading Gemma model...")
# Load the tokenizer separately with the chat template
tokenizer = AutoTokenizer.from_pretrained("google/gemma-3-1b-it")
gemma_pipe = pipeline("text-generation",
model="google/gemma-3-1b-it",
tokenizer=tokenizer, # Pass the loaded tokenizer here
device=0,
torch_dtype=torch.bfloat16)
st.success("Gemma model loaded successfully!")
except Exception as e:
st.error(f"Error loading Gemma model: {e}")
st.error(f"Detailed error: {type(e).__name__}: {str(e)}")
return score_pipe, gemma_pipe
def extract_assistant_content(raw_response):
"""Extract only the assistant's content from the Gemma-3 response."""
# Convert to string and work with it directly
response_str = str(raw_response)
# Look for the assistant's content marker
assistant_marker = "'role': 'assistant', 'content': '"
if assistant_marker in response_str:
start_idx = response_str.find(assistant_marker) + len(assistant_marker)
# Extract everything after the marker until the end or closing quote
content = response_str[start_idx:]
# Find the end of the content (last single quote before the end of the string or before closing curly brace)
end_markers = ["'}", "'}]"]
end_idx = len(content)
for marker in end_markers:
pos = content.rfind(marker)
if pos != -1 and pos < end_idx:
end_idx = pos
return content[:end_idx]
# Fallback - return the original response
return response_str
score_pipe, gemma_pipe = load_models()
# Input: Query text for scoring and CSV file upload for candidate reviews
query_input = st.text_area("Enter your query text for analysis (this does not need to be part of the CSV):")
uploaded_file = st.file_uploader("Upload Reviews CSV File (must contain a 'reviewText' column)", type=["csv"])
if score_pipe is None or gemma_pipe is None:
st.error("Model loading failed. Please check your model names, token permissions, and GPU configuration.")
else:
candidate_docs = []
if uploaded_file is not None:
try:
df = pd.read_csv(uploaded_file)
if 'reviewText' not in df.columns:
st.error("CSV must contain a 'reviewText' column.")
else:
candidate_docs = df['reviewText'].dropna().astype(str).tolist()
except Exception as e:
st.error(f"Error reading CSV file: {e}")
if st.button("Generate Report"):
# Reset timer state so that the timer always shows up
st.session_state.timer_started = False
st.session_state.timer_frozen = False
if uploaded_file is None:
st.error("Please upload a CSV file.")
elif not candidate_docs:
st.error("CSV must contain a 'reviewText' column.")
elif not query_input.strip():
st.error("Please enter a query text!")
else:
if not st.session_state.timer_started and not st.session_state.timer_frozen:
st.session_state.timer_started = True
html(timer(), height=50)
status_text = st.empty()
progress_bar = st.progress(0)
# Stage 1: Score candidate documents using the provided query.
status_text.markdown("**π Scoring candidate documents...**")
# Process each review individually to avoid memory issues
scored_results = []
for i, doc in enumerate(candidate_docs):
# Update progress based on current document
progress = int((i / len(candidate_docs)) * 50) # First half of progress bar (0-50%)
progress_bar.progress(progress)
# Process single document with truncation to avoid tensor size mismatch
try:
# Use the tokenizer to properly truncate the input
tokenizer = score_pipe.tokenizer
max_length = tokenizer.model_max_length # Usually 512 for RoBERTa
# Truncate the text using the tokenizer to ensure it fits
encoded_input = tokenizer(doc, truncation=True, max_length=max_length, return_tensors="pt")
# Decode back to text to get the truncated version
truncated_doc = tokenizer.decode(encoded_input["input_ids"][0], skip_special_tokens=True)
# Now process the truncated document
result = score_pipe(truncated_doc)
scored_results.append(result[0]) # Get the first result
except Exception as e:
st.warning(f"Error processing document {i}: {str(e)}")
# Add a placeholder result to maintain indexing
scored_results.append({"label": "ERROR", "score": 0})
# Display occasional status updates for large datasets
if i % max(1, len(candidate_docs) // 10) == 0:
status_text.markdown(f"**π Scoring documents... ({i}/{len(candidate_docs)})**")
# Pair each review with its score assuming the output order matches the input order.
scored_docs = list(zip(candidate_docs, [result["score"] for result in scored_results]))
progress_bar.progress(67)
# Stage 2: Generate Report using Gemma in the new messages format.
status_text.markdown("**π Generating report with Gemma...**")
# For very large datasets, summarize or sample the scored_docs before sending to Gemma
sampled_docs = scored_docs
if len(scored_docs) > 10000: # Arbitrary threshold for what's "too large"
# Option 1: Random sampling
sampled_docs = random.sample(scored_docs, 1000)
# Build the user content with query, sentiment results, and original review data.
# Format the prompt as chat for Gemma
messages = [
{"role": "user", "content": f"""
Generate a concise 300-word report based on the following analysis without repeating what's in the analysis.
Query:
"{query_input}"
Candidate Reviews with their scores:
{scored_docs}
"""}
]
raw_result = gemma_pipe(messages, max_new_tokens=50)
report = extract_assistant_content(raw_result)
progress_bar.progress(100)
status_text.success("**β
Generation complete!**")
html("<script>localStorage.setItem('freezeTimer', 'true');</script>", height=0)
st.session_state.timer_frozen = True
#st.write("**Scored Candidate Reviews:**", scored_docs)
st.write("**Generated Report:**", report) |