Spaces:
Runtime error
Runtime error
fracapuano
commited on
Commit
•
02556c2
1
Parent(s):
acbe90b
fix: major code restructuring
Browse files- qa/utils.py +58 -29
qa/utils.py
CHANGED
@@ -7,7 +7,7 @@ from langchain.llms import OpenAI
|
|
7 |
from langchain.docstore.document import Document
|
8 |
from langchain.vectorstores import FAISS, VectorStore
|
9 |
import docx2txt
|
10 |
-
from typing import List, Dict, Any, Union, Text, Tuple
|
11 |
import re
|
12 |
from io import BytesIO
|
13 |
import streamlit as st
|
@@ -15,12 +15,38 @@ from .prompts import STUFF_PROMPT
|
|
15 |
from pypdf import PdfReader
|
16 |
from openai.error import AuthenticationError
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
class HashDocument(Document):
|
19 |
"""A document that uses the page content as the hash."""
|
20 |
def __hash__(self):
|
21 |
content = self.page_content + "".join(self.metadata[k] for k in self.metadata.keys())
|
22 |
return hash(content)
|
23 |
|
|
|
24 |
@st.cache_data
|
25 |
def parse_docx(file: BytesIO) -> str:
|
26 |
text = docx2txt.process(file)
|
@@ -43,7 +69,6 @@ def parse_pdf(file: BytesIO) -> List[str]:
|
|
43 |
text = re.sub(r"\n\s*\n", "\n\n", text)
|
44 |
|
45 |
output.append(text)
|
46 |
-
|
47 |
return output
|
48 |
|
49 |
|
@@ -54,6 +79,19 @@ def parse_txt(file: BytesIO) -> str:
|
|
54 |
text = re.sub(r"\n\s*\n", "\n\n", text)
|
55 |
return text
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
@st.cache_data
|
59 |
def text_to_docs(text: Union[Text, Tuple[Text]]) -> List[Document]:
|
@@ -61,10 +99,13 @@ def text_to_docs(text: Union[Text, Tuple[Text]]) -> List[Document]:
|
|
61 |
Converts a string or frozenset of strings to a list of Documents
|
62 |
with metadata.
|
63 |
"""
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
elif isinstance(text,
|
|
|
|
|
|
|
68 |
# map each page into a document instance
|
69 |
page_docs = [HashDocument(page_content=page) for page in text]
|
70 |
# Add page numbers as metadata
|
@@ -72,52 +113,40 @@ def text_to_docs(text: Union[Text, Tuple[Text]]) -> List[Document]:
|
|
72 |
doc.metadata["page"] = i + 1
|
73 |
# Split pages into chunks
|
74 |
doc_chunks = []
|
75 |
-
#
|
76 |
-
text_splitter =
|
77 |
-
|
78 |
-
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""],
|
79 |
-
chunk_overlap=20, # minimal overlap to capture sematic overlap across chunks
|
80 |
-
)
|
81 |
-
|
82 |
for doc in page_docs:
|
|
|
83 |
chunks = text_splitter.split_text(doc.page_content)
|
84 |
for i, chunk in enumerate(chunks):
|
85 |
# Create a new document for each individual chunk
|
86 |
doc = HashDocument(
|
87 |
page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": i}
|
88 |
)
|
89 |
-
# Add sources
|
90 |
doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}"
|
91 |
doc_chunks.append(doc)
|
92 |
|
93 |
return doc_chunks
|
94 |
|
95 |
-
else:
|
96 |
-
raise ValueError("Text must be either a string or a list of strings. Got: {type(text)}")
|
97 |
-
|
98 |
|
99 |
@st.cache_data
|
100 |
def embed_docs(_docs: Tuple[Document]) -> VectorStore:
|
101 |
"""Embeds a list of Documents and returns a FAISS index"""
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
"Enter your OpenAI API key in the sidebar. You can get a key at https://platform.openai.com/account/api-keys."
|
106 |
-
)
|
107 |
-
else:
|
108 |
-
# Embed the chunks
|
109 |
-
embeddings = OpenAIEmbeddings(openai_api_key=st.session_state.get("OPENAI_API_KEY"))
|
110 |
-
index = FAISS.from_documents(list(docs), embeddings)
|
111 |
|
112 |
-
|
113 |
|
114 |
@st.cache_data
|
115 |
-
def search_docs(_index: VectorStore, query: str) -> List[Document]:
|
116 |
"""Searches a FAISS index for similar chunks to the query
|
117 |
and returns a list of Documents."""
|
118 |
|
119 |
# Search for similar chunks
|
120 |
-
docs = _index.similarity_search(query, k=
|
121 |
return docs
|
122 |
|
123 |
|
|
|
7 |
from langchain.docstore.document import Document
|
8 |
from langchain.vectorstores import FAISS, VectorStore
|
9 |
import docx2txt
|
10 |
+
from typing import List, Dict, Any, Union, Text, Tuple, Iterable
|
11 |
import re
|
12 |
from io import BytesIO
|
13 |
import streamlit as st
|
|
|
15 |
from pypdf import PdfReader
|
16 |
from openai.error import AuthenticationError
|
17 |
|
18 |
+
class PDFFile:
|
19 |
+
"""A PDF file class for typing purposes."""
|
20 |
+
@classmethod
|
21 |
+
def is_pdf(file:Any) -> bool:
|
22 |
+
return file.name.endswith(".pdf")
|
23 |
+
|
24 |
+
class DocxFile:
|
25 |
+
"""A Docx file class for typing purposes."""
|
26 |
+
@classmethod
|
27 |
+
def is_docx(file:Any) -> bool:
|
28 |
+
return file.name.endswith(".docx")
|
29 |
+
|
30 |
+
class TxtFile:
|
31 |
+
"""A Txt file class for typing purposes."""
|
32 |
+
@classmethod
|
33 |
+
def is_txt(file:Any) -> bool:
|
34 |
+
return file.name.endswith(".txt")
|
35 |
+
|
36 |
+
class CodeFile:
|
37 |
+
"""A scripting-file class for typing purposes."""
|
38 |
+
@classmethod
|
39 |
+
def is_code(file:Any) -> bool:
|
40 |
+
return file.name.split(".")[1] in [".py", ".json", ".html", ".css", ".md"]
|
41 |
+
|
42 |
+
|
43 |
class HashDocument(Document):
|
44 |
"""A document that uses the page content as the hash."""
|
45 |
def __hash__(self):
|
46 |
content = self.page_content + "".join(self.metadata[k] for k in self.metadata.keys())
|
47 |
return hash(content)
|
48 |
|
49 |
+
|
50 |
@st.cache_data
|
51 |
def parse_docx(file: BytesIO) -> str:
|
52 |
text = docx2txt.process(file)
|
|
|
69 |
text = re.sub(r"\n\s*\n", "\n\n", text)
|
70 |
|
71 |
output.append(text)
|
|
|
72 |
return output
|
73 |
|
74 |
|
|
|
79 |
text = re.sub(r"\n\s*\n", "\n\n", text)
|
80 |
return text
|
81 |
|
82 |
+
@st.cache_data
|
83 |
+
def get_text_splitter(
|
84 |
+
chunk_size:int=500,
|
85 |
+
chunk_overlap:int=50,
|
86 |
+
separators:Iterable[Text]= ["\n\n", "\n", ".", "!", "?", ",", " ", ""])->RecursiveCharacterTextSplitter:
|
87 |
+
"""Returns a text splitter instance with the given parameters. Cached for performance."""
|
88 |
+
# text splitter to split the text into chunks
|
89 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
90 |
+
chunk_size=chunk_size, # a limited chunk size ensures smaller chunks and more precise answers
|
91 |
+
separators=separators, # a list of separators to split the text on
|
92 |
+
chunk_overlap=chunk_overlap, # minimal overlap to capture sematic overlap across chunks
|
93 |
+
)
|
94 |
+
return text_splitter
|
95 |
|
96 |
@st.cache_data
|
97 |
def text_to_docs(text: Union[Text, Tuple[Text]]) -> List[Document]:
|
|
|
99 |
Converts a string or frozenset of strings to a list of Documents
|
100 |
with metadata.
|
101 |
"""
|
102 |
+
# sanity check on the input provided
|
103 |
+
if not isinstance(text, (str, tuple)):
|
104 |
+
raise ValueError("Text must be either a string or a list of strings. Got: {type(text)}")
|
105 |
+
elif isinstance(text, str):
|
106 |
+
# Take a single string as one page - make it a tuple so that is hashable
|
107 |
+
text = (text, )
|
108 |
+
if isinstance(text, tuple):
|
109 |
# map each page into a document instance
|
110 |
page_docs = [HashDocument(page_content=page) for page in text]
|
111 |
# Add page numbers as metadata
|
|
|
113 |
doc.metadata["page"] = i + 1
|
114 |
# Split pages into chunks
|
115 |
doc_chunks = []
|
116 |
+
# Get the text splitter
|
117 |
+
text_splitter = get_text_splitter()
|
118 |
+
|
|
|
|
|
|
|
|
|
119 |
for doc in page_docs:
|
120 |
+
# this splits the page into chunks
|
121 |
chunks = text_splitter.split_text(doc.page_content)
|
122 |
for i, chunk in enumerate(chunks):
|
123 |
# Create a new document for each individual chunk
|
124 |
doc = HashDocument(
|
125 |
page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": i}
|
126 |
)
|
127 |
+
# Add sources to metadata for retrieval later on
|
128 |
doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}"
|
129 |
doc_chunks.append(doc)
|
130 |
|
131 |
return doc_chunks
|
132 |
|
|
|
|
|
|
|
133 |
|
134 |
@st.cache_data
|
135 |
def embed_docs(_docs: Tuple[Document]) -> VectorStore:
|
136 |
"""Embeds a list of Documents and returns a FAISS index"""
|
137 |
+
# Embed the chunks
|
138 |
+
embeddings = OpenAIEmbeddings(openai_api_key=st.session_state.get("OPENAI_API_KEY"))
|
139 |
+
index = FAISS.from_documents(list(_docs), embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
return index
|
142 |
|
143 |
@st.cache_data
|
144 |
+
def search_docs(_index: VectorStore, query: str, k:int=5) -> List[Document]:
|
145 |
"""Searches a FAISS index for similar chunks to the query
|
146 |
and returns a list of Documents."""
|
147 |
|
148 |
# Search for similar chunks
|
149 |
+
docs = _index.similarity_search(query, k=k)
|
150 |
return docs
|
151 |
|
152 |
|