Spaces:
Runtime error
Runtime error
File size: 5,191 Bytes
934ba8d 7701eda 2b468b7 e245c57 2b468b7 7701eda c6caac4 934ba8d 7701eda 934ba8d c6caac4 9b71ed1 c6caac4 934ba8d c6caac4 934ba8d c6caac4 934ba8d c6caac4 934ba8d c6caac4 934ba8d 7701eda c6caac4 934ba8d df1acda 934ba8d c6caac4 e920a86 c6caac4 934ba8d c6caac4 e920a86 c6caac4 e920a86 c6caac4 e920a86 934ba8d c6caac4 934ba8d c6caac4 d3e4173 934ba8d 7701eda c6caac4 934ba8d 39bdbb6 df1acda 934ba8d 7701eda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import gradio as gr
import cv2
import requests
import os
from ultralyticsplus import YOLO, render_result
# Model Heading and Description
model_heading = "CandleStickScan: Pattern Recognition for Trading Success"
description = """ π―οΈ Light up your trading game with CandleStickScan! We decode candlestick mysteries like trading Sherlock! π΅οΈββοΈ From 'Head and Shoulders' to 'W-Bottom', we've got patterns covered. Powered by Foduu AI's magic, we'll be your trading Gandalf. Whether you're a trading guru or just starting, we've got your back. πΌπ°
π Trading with CandleScan is like having a secret trading sauce. Curious? Reach out at [email protected] and unveil the magic! Liking us won't give you superpowers, but it's a step towards trading wizardry! πππ―οΈ
π§ Contact us: [email protected]
π Like | Join the Trading Adventure!"""
image_path= [['test/test1.jpg', 'foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45], ['test/test2.jpg', 'foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45]]
# Load YOLO model
model = YOLO('foduucom/stockmarket-pattern-detection-yolov8')
#############################################################Image Inference############################################################
def yolov8_img_inference(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
"""
YOLOv8 inference function
Args:
image: Input image
model_path: Path to the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
model = YOLO(model_path)
model.overrides['conf'] = conf_threshold
model.overrides['iou']= iou_threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000
# image = read_image(image)
results = model.predict(image)
render = render_result(model=model, image=image, result=results[0])
return render
inputs_image = [
gr.inputs.Image(type="filepath", label="Input Image"),
gr.inputs.Dropdown(["foduucom/stockmarket-pattern-detection-yolov8"],
default="foduucom/stockmarket-pattern-detection-yolov8", label="Model"),
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]
outputs_image =gr.outputs.Image(type="filepath", label="Output Image")
interface_image = gr.Interface(
fn=yolov8_img_inference,
inputs=inputs_image,
outputs=outputs_image,
title=model_heading,
description=description,
examples=image_path,
cache_examples=False,
theme='huggingface'
)
##################################################Video Inference################################################################
def show_preds_video(
video_path: str = None,
model_path: str = None,
image_size: int = 640,
conf_threshold: float = 0.25,
iou_threshold: float = 0.45,
):
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
success, frame = cap.read()
if success:
model = YOLO(model_path)
model.overrides['conf'] = conf_threshold
model.overrides['iou'] = iou_threshold
model.overrides['agnostic_nms'] = False
model.overrides['max_det'] = 1000
results = model.predict(frame)
annotated_frame = results[0].plot()
# Do not display the frame using cv2.imshow
# cv2.imshow("YOLOv8 Inference", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
break
cap.release()
cv2.destroyAllWindows()
inputs_video = [
gr.components.Video(type="filepath", label="Input Video"),
gr.inputs.Dropdown(["foduucom/stockmarket-pattern-detection-yolov8"],
default="foduucom/stockmarket-pattern-detection-yolov8", label="Model"),
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]
outputs_video = gr.outputs.Image(type="filepath", label="Output Video")
video_path=[['test/testvideo.mp4','foduucom/stockmarket-pattern-detection-yolov8', 640, 0.25, 0.45]]
interface_video = gr.Interface(
fn=show_preds_video,
inputs=inputs_video,
outputs=outputs_video,
title=model_heading,
description=description,
examples=video_path,
cache_examples=False,
theme='huggingface'
)
gr.TabbedInterface(
[interface_image, interface_video],
tab_names=['Image inference', 'Video inference']
).queue().launch()
|