File size: 8,297 Bytes
b8d3576 0ac2665 b8d3576 0ac2665 b8d3576 0ac2665 4f8dfb9 0ac2665 3cdb380 4f8dfb9 b8d3576 3cdb380 0ac2665 3cdb380 0ac2665 3cdb380 0ac2665 3cdb380 0ac2665 3cdb380 0ac2665 3cdb380 0ac2665 3cdb380 0ac2665 b8d3576 3cdb380 0ac2665 b8d3576 0ac2665 3cdb380 0ac2665 4f8dfb9 0ac2665 3cdb380 0ac2665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import streamlit as st
import torch
import clip
from PIL import Image
import os
import pandas as pd
from datetime import datetime
import torch.nn.functional as F
from typing import List
# Device setup
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load CLIP model and preprocessor (ViT-B/32 = small model, CPU-friendly)
model, preprocess = clip.load("ViT-B/32", device=device)
model.eval()
# Display app title and information
st.set_page_config(page_title="Few-Shot Fault Detection", layout="wide")
st.title("🛠️ Few-Shot Fault Detection (Industrial Quality Control)")
st.markdown("""
This demo uses the **smaller `ViT-B/32` encoder** from OpenAI's CLIP model to classify test images as **Nominal** or **Defective**, based on few-shot learning using user-provided reference images.
⚠️ **Note**: This app is running on a **free CPU tier** and is meant for demonstration purposes. For more advanced use cases, including GPU acceleration, custom training, and larger models, please refer to:
📄 [Megahed et al. (2025)](https://arxiv.org/abs/2501.12596):
*Adapting OpenAI's CLIP Model for Few-Shot Image Inspection in Manufacturing Quality Control: An Expository Case Study with Multiple Application Examples*
🔗 [GitHub & Colab links available in the paper](https://arxiv.org/abs/2501.12596)
""")
# --- Few-shot classification logic ---
def few_shot_fault_classification(
test_images: List[Image.Image],
test_image_filenames: List[str],
nominal_images: List[Image.Image],
nominal_descriptions: List[str],
defective_images: List[Image.Image],
defective_descriptions: List[str],
num_few_shot_nominal_imgs: int,
file_path: str = '.',
file_name: str = 'image_classification_results.csv',
print_one_liner: bool = False
):
if not isinstance(test_images, list): test_images = [test_images]
if not isinstance(test_image_filenames, list): test_image_filenames = [test_image_filenames]
if not isinstance(nominal_images, list): nominal_images = [nominal_images]
if not isinstance(nominal_descriptions, list): nominal_descriptions = [nominal_descriptions]
if not isinstance(defective_images, list): defective_images = [defective_images]
if not isinstance(defective_descriptions, list): defective_descriptions = [defective_descriptions]
csv_file = os.path.join(file_path, file_name)
results = []
with torch.no_grad():
nominal_features = torch.stack([model.encode_image(img.unsqueeze(0)).squeeze(0).to(device) for img in nominal_images])
nominal_features /= nominal_features.norm(dim=-1, keepdim=True)
defective_features = torch.stack([model.encode_image(img.unsqueeze(0)).squeeze(0).to(device) for img in defective_images])
defective_features /= defective_features.norm(dim=-1, keepdim=True)
csv_data = []
for idx, test_img in enumerate(test_images):
test_features = model.encode_image(test_img.unsqueeze(0)).squeeze(0).to(device)
test_features /= test_features.norm(dim=-1, keepdim=True)
max_nom_sim, max_def_sim = -float('inf'), -float('inf')
max_nom_idx, max_def_idx = -1, -1
for i in range(nominal_features.shape[0]):
sim = (test_features @ nominal_features[i].T).item()
if sim > max_nom_sim:
max_nom_sim, max_nom_idx = sim, i
for j in range(defective_features.shape[0]):
sim = (test_features @ defective_features[j].T).item()
if sim > max_def_sim:
max_def_sim, max_def_idx = sim, j
similarities = torch.tensor([max_nom_sim, max_def_sim])
probabilities = F.softmax(similarities, dim=0).tolist()
prob_nom, prob_def = probabilities
classification = "Defective" if prob_def > prob_nom else "Nominal"
csv_data.append({
"datetime_of_operation": datetime.now().isoformat(),
"num_few_shot_nominal_imgs": num_few_shot_nominal_imgs,
"image_path": test_image_filenames[idx],
"image_name": test_image_filenames[idx].split('/')[-1],
"classification_result": classification,
"non_defect_prob": round(prob_nom, 3),
"defect_prob": round(prob_def, 3),
"nominal_description": nominal_descriptions[max_nom_idx],
"defective_description": defective_descriptions[max_def_idx] if defective_images else "N/A"
})
if print_one_liner:
print(f"{test_image_filenames[idx]} classified as {classification} "
f"(Nominal Prob: {prob_nom:.3f}, Defective Prob: {prob_def:.3f})")
file_exists = os.path.isfile(csv_file)
with open(csv_file, mode='a' if file_exists else 'w', newline='') as file:
import csv
fieldnames = [
"datetime_of_operation", "num_few_shot_nominal_imgs", "image_path", "image_name",
"classification_result", "non_defect_prob", "defect_prob",
"nominal_description", "defective_description"
]
writer = csv.DictWriter(file, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
for row in csv_data:
writer.writerow(row)
return ""
# --- App state ---
if 'nominal_images' not in st.session_state:
st.session_state.nominal_images = []
if 'defective_images' not in st.session_state:
st.session_state.defective_images = []
if 'test_images' not in st.session_state:
st.session_state.test_images = []
if 'results' not in st.session_state:
st.session_state.results = []
# --- Tabs ---
tab1, tab2, tab3 = st.tabs(["📥 Upload Reference Images", "🔍 Test Classification", "📊 Results"])
# Tab 1: Upload Reference Images
with tab1:
st.header("Upload Reference Images")
nominal_files = st.file_uploader("Upload Nominal Images", accept_multiple_files=True, type=['png', 'jpg', 'jpeg'])
defective_files = st.file_uploader("Upload Defective Images", accept_multiple_files=True, type=['png', 'jpg', 'jpeg'])
if nominal_files:
st.session_state.nominal_images = [preprocess(Image.open(file).convert("RGB")).to(device) for file in nominal_files]
st.session_state.nominal_descriptions = [file.name for file in nominal_files]
st.success(f"Uploaded {len(nominal_files)} nominal images.")
if defective_files:
st.session_state.defective_images = [preprocess(Image.open(file).convert("RGB")).to(device) for file in defective_files]
st.session_state.defective_descriptions = [file.name for file in defective_files]
st.success(f"Uploaded {len(defective_files)} defective images.")
# Tab 2: Test Classification
with tab2:
st.header("Upload Test Image(s)")
test_files = st.file_uploader("Upload Test Images", accept_multiple_files=True, type=['png', 'jpg', 'jpeg'])
if st.button("🔍 Run Classification") and test_files:
test_images = [preprocess(Image.open(file).convert("RGB")).to(device) for file in test_files]
test_filenames = [file.name for file in test_files]
few_shot_fault_classification(
test_images=test_images,
test_image_filenames=test_filenames,
nominal_images=st.session_state.nominal_images,
nominal_descriptions=st.session_state.nominal_descriptions,
defective_images=st.session_state.defective_images,
defective_descriptions=st.session_state.defective_descriptions,
num_few_shot_nominal_imgs=len(st.session_state.nominal_images),
file_path=".",
file_name="streamlit_results.csv",
print_one_liner=False
)
st.success("Classification complete!")
st.session_state.results = "streamlit_results.csv"
# Tab 3: View/Download Results
with tab3:
st.header("Classification Results")
if os.path.exists("streamlit_results.csv"):
df = pd.read_csv("streamlit_results.csv")
st.dataframe(df)
st.download_button("📥 Download Results", data=df.to_csv(index=False), file_name="classification_results.csv", mime="text/csv")
else:
st.info("No results yet. Please classify some test images.")
|