Ask-Document-AI / app.py
flutterbasit's picture
Update app.py
2e1f4bf verified
raw
history blame
8.42 kB
import gradio as gr
from langchain.text_splitter import CharacterTextSplitter
from sentence_transformers import SentenceTransformer
import faiss
from PyPDF2 import PdfReader
from docx import Document
from transformers import pipeline # Hugging Face for summarization
import os
from groq import Groq
# Initialize Sentence Transformer for embeddings
model = SentenceTransformer('all-MiniLM-L6-v2')
client = Groq(api_key=os.getenv("groq_api_key"))
# Vector Store (FAISS)
dimension = 384 # Embedding size
index = faiss.IndexFlatL2(dimension)
# Initialize Hugging Face summarization model
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Function to extract text from PDFs
def extract_text_from_pdf(file_path):
reader = PdfReader(file_path)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
# Function to extract text from DOCX
def extract_text_from_docx(file_path):
doc = Document(file_path)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text
# Function to process files
def process_files(files):
texts = []
for file in files:
if file.name.endswith('.pdf'):
texts.append(extract_text_from_pdf(file.name))
elif file.name.endswith('.docx'):
texts.append(extract_text_from_docx(file.name))
return texts
# Function to tokenize and chunk text
def chunk_text(text, chunk_size=500, overlap=50):
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
return text_splitter.split_text(text)
# Function to create embeddings and populate FAISS index
def create_embeddings_and_store(chunks):
global index
# Reset the FAISS index before adding new embeddings
index = faiss.IndexFlatL2(dimension)
for chunk in chunks:
embedding = model.encode([chunk])
embedding = embedding.astype('float32') # Ensure embedding is in correct format
index.add(embedding)
# Function for summarizing the text before sending
def summarize_text(text):
summary = summarizer(text, max_length=300, min_length=100, do_sample=False)
return summary[0]['summary_text']
# Function to dynamically truncate context to fit the Groq API's token limit
def truncate_context(context, max_tokens=4000): # Adjust max_tokens based on Groq's limits
if len(context) > max_tokens:
context = context[:max_tokens] # Truncate context to fit within the token limit
return context
# Function to query Groq with context and question
def query_groq(question, context):
try:
if not question.strip():
return "Error: Question is empty or invalid."
if not context.strip():
return "Error: No context available from the uploaded documents."
# Dynamically truncate context to fit within the token limit
max_context_tokens = 4000 # Groq's token limit for context
context = truncate_context(context, max_tokens=max_context_tokens)
# Query Groq API with the truncated context
chat_completion = client.chat.completions.create(
messages=[{"role": "system", "content": "You are a helpful assistant. Use the context provided to answer the question."},
{"role": "assistant", "content": context},
{"role": "user", "content": question}],
model="llama3-8b-8192", stream=False)
if chat_completion and chat_completion.choices:
return chat_completion.choices[0].message.content
else:
return "Error: Received an unexpected response from Groq API."
except Exception as e:
return f"Error: {str(e)}"
# Function to handle RAG pipeline
def rag_pipeline(files, question, summarize_before_sending=False):
try:
if not files:
return "Error: No files uploaded. Please upload at least one document."
# Process uploaded files
texts = process_files(files)
if not texts:
return "Error: Could not extract text from the uploaded files."
# Combine all extracted text into a single context
combined_text = " ".join(texts)
if summarize_before_sending:
# Summarize the text to reduce token count
combined_text = summarize_text(combined_text)
# Ensure the combined text is within Groq's token limit
max_text_size = 4000 # Adjust based on Groq's token limits
combined_text = truncate_context(combined_text, max_tokens=max_text_size)
# Chunk and create embeddings
chunks = chunk_text(combined_text)
create_embeddings_and_store(chunks)
# Query Groq LLM with context and question
answer = query_groq(question, combined_text)
return answer
except Exception as e:
return f"Error: {str(e)}"
# Enhanced UI with modern and clean style
with gr.Blocks() as app:
with gr.Row():
# Left Column for instructions
with gr.Column(scale=1, min_width=250):
gr.Markdown("""
<div style="background: #3498db; padding: 30px; border-radius: 12px; box-shadow: 0 5px 15px rgba(0, 0, 0, 0.1); font-family: 'Roboto', sans-serif;">
<h2 style="color: #fff; font-size: 32px; font-weight: bold;">DocAI: Document Assistant</h2>
<p style="color: #ddd; font-size: 18px;">Welcome to DocAI! Upload your documents and get intelligent answers based on their content.</p>
<p style="color: #ddd; font-size: 16px; line-height: 1.6;"><strong>Steps to use:</strong></p>
<ul style="color: #ddd; font-size: 16px; line-height: 1.6;">
<li>Upload your PDF or DOCX files.</li>
<li>Ask questions related to the document.</li>
<li>Click "Submit" to get your answers.</li>
</ul>
<p style="color: #ddd; font-size: 16px; line-height: 1.6;">Upload multiple files and get answers based on their contents.</p>
</div>
""")
# Right Column for the main application content
with gr.Column(scale=2, min_width=600):
gr.Markdown("""
<div style="background: #3498db; padding: 20px; border-radius: 15px; box-shadow: 0 5px 15px rgba(0, 0, 0, 0.2); font-family: 'Roboto', sans-serif;">
<h2 style="color: #fff; font-size: 36px; font-weight: bold; text-align: center; letter-spacing: 2px; text-transform: uppercase;">
Ask Your Document
</h2>
<p style="color: #ddd; font-size: 18px; text-align: center; line-height: 1.6;">
Get intelligent answers based on the content of your uploaded documents. Just ask a question!
</p>
</div>
""")
# File input
file_input = gr.File(
label="Upload Documents (PDF/DOCX)",
file_types=[".pdf", ".docx"],
file_count="multiple",
interactive=True
)
# Question input
question_input = gr.Textbox(
label="Ask a question related your document",
placeholder="Type your question here...",
interactive=True,
lines=2,
max_lines=4
)
# # Summarize before sending checkbox
# summarize_before_input = gr.Checkbox(
# label="Summarize Before Sending",
# value=False
# )
# Output text box with enhanced styling
output = gr.Textbox(
label="Answer from LLM",
interactive=False,
lines=4,
max_lines=6
)
# Submit button with icon and modern styling
submit_button = gr.Button("Submit", icon="send")
# Loading spinner
# with gr.Row():
# with gr.Column(scale=1, min_width=250):
# gr.Markdown("<div style='font-size: 14px; color: #555;'>Your answer will appear here...</div>")
# Apply the logic for the button to trigger the RAG pipeline
submit_button.click(rag_pipeline, inputs=[file_input, question_input], outputs=output)
# Launch the app
app.launch()