Spaces:
Running
Running
File size: 6,164 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import streamlit as st
import copy
import streamlit.components.v1 as components
import streamlit.caching as caching
import time
import argparse
import numpy as np
import gym
import gym_minigrid
from gym_minigrid.wrappers import *
from gym_minigrid.window import Window
import matplotlib.pyplot as plt
from gym_minigrid.social_ai_envs.socialaigrammar import SocialAIGrammar, SocialAIActions, SocialAIActionSpace
default_params = {
"Pointing": 0,
"Emulation": 1,
"Language_grounding": 2,
"Pragmatic_frame_complexity": 1,
}
class InteractiveACL:
def choose(self, node, chosen_parameters):
options = [n.label for n in node.children]
box_name = f'{node.label} ({node.id})'
ret = st.sidebar.selectbox(
box_name,
options,
index=default_params.get(node.label, 0)
)
for ind, (c, c_lab) in enumerate(zip(node.children, options)):
if c_lab == ret:
return c
def get_info(self):
return {}
@st.cache(allow_output_mutation=True, suppress_st_warning=True)
def load_env():
env = gym.make("SocialAI-SocialAIParamEnv-v1")
env.curriculum=InteractiveACL()
return env
st.title("SocialAI interactive demo")
env = load_env()
st.subheader("Primitive actions")
# moving buttons
columns = st.columns([1]*(len(SocialAIActions)+1))
action_names = [a.name for a in list(SocialAIActions)] + ["no_op"]
# keys = ["Left arrow", "Right arrow", "Up arrow", "t", "q", "Shift"]
keys = ["a", "d", "w", "t", "q", "Shift"]
# actions = [st.button(a.name) for a in list(SocialAIActions)] + [st.button("none")]
actions = []
for a_name, col, key in zip(action_names, columns, keys):
with col:
actions.append(st.button(a_name+f" ({key})", help=f"Shortcut: {key}"))
st.subheader("Speaking actions")
# talking buttons
t, w, b = st.columns([1, 1, 1])
changes = [False, False]
with t:
templ = st.selectbox("Template", options=SocialAIGrammar.templates, index=1)
with w:
word = st.selectbox("Word", options=SocialAIGrammar.things, index=0)
speak = st.button("Speak (s)", help="Shortcut s")
# utterance change detection
utt_changed = False
if "template" in st.session_state:
utt_changed = st.session_state.template != templ
if "word" in st.session_state:
utt_changed = utt_changed or st.session_state.word != word
st.session_state["template"] = templ
st.session_state["word"] = word
st.sidebar.subheader("Select the parameters:")
play = st.button("Play (Enter)", help="Generate the env. Shortcut: Enter")
components.html(
"""
<script>
const doc = window.parent.document;
buttons = Array.from(doc.querySelectorAll('button[kind=primary]'));
const left_button = buttons.find(el => el.innerText === 'left (a)');
const right_button = buttons.find(el => el.innerText === 'right (d)');
const forward_button = buttons.find(el => el.innerText === 'forward (w)');
const toggle_button = buttons.find(el => el.innerText === 'toggle (t)');
const none_button = buttons.find(el => el.innerText === 'no_op (Shift)');
const done_button = buttons.find(el => el.innerText === 'done (q)');
const play_button = buttons.find(el => el.innerText === 'Play (Enter)');
const speak_button = buttons.find(el => el.innerText === 'Speak (s)');
doc.addEventListener('keydown', function(e) {
switch (e.keyCode) {
case 65: // (65 = a )
left_button.click();
break;
case 68: // (68 = d )
right_button.click();
break;
case 87: // (87 = w )
forward_button.click();
break;
case 84: // (84 = t)
toggle_button.click();
break;
case 16: // (16 = shift)
none_button.click();
break;
case 81: // (81 = q)
done_button.click();
break;
case 13: // (13 = enter)
play_button.click();
break;
case 83: // (83 = s)
speak_button.click();
break;
}
});
</script>
""",
height=0,
width=0,
)
# no action
done_ind = len(actions) - 2
actions[done_ind] = False
# was agent controlled
no_action = not any(actions) and not speak
done = False
info = None
if not no_action or play or utt_changed:
# agent is controlled
if any(actions):
p_act = np.argmax(actions)
if p_act == len(actions) - 1:
p_act = np.nan
action = [p_act, np.nan, np.nan]
elif speak:
templ_ind = SocialAIGrammar.templates.index(templ)
word_ind = SocialAIGrammar.things.index(word)
action = [np.nan, templ_ind, word_ind]
else:
action = None
if action:
obs, reward, done, info = env.step(action)
env.render(mode='human')
st.pyplot(env.window.fig)
# if done or no_action:
if done or (no_action and not play and not utt_changed):
env.reset()
else:
env.parameter_tree.sample_env_params(ACL=env.curriculum)
with st.expander("Parametric tree", True):
# draw tree
current_param_labels = env.current_env.parameters if env.current_env.parameters else {}
folded_nodes = [
"Information_seeking",
"Collaboration",
"OthersPerceptionInference"
]
# print(current_param_labels["Env_type"])
folded_nodes.remove(current_param_labels["Env_type"])
env.parameter_tree.draw_tree(
filename="viz/streamlit_temp_tree",
ignore_labels=["Num_of_colors"],
selected_parameters=current_param_labels,
folded_nodes=folded_nodes,
# save=False
)
# st.graphviz_chart(env.parameter_tree.tree)
st.image("viz/streamlit_temp_tree.png")
# if not no_action or play or utt_changed:
# # agent is controlled
# if any(actions):
# p_act = np.argmax(actions)
# if p_act == len(actions) - 1:
# p_act = np.nan
#
# action = [p_act, np.nan, np.nan]
#
# elif speak:
# templ_ind = SocialAIGrammar.templates.index(templ)
# word_ind = SocialAIGrammar.things.index(word)
# action = [np.nan, templ_ind, word_ind]
#
# else:
# action = None
#
# if action:
# obs, reward, done, info = env.step(action)
#
# env.render(mode='human')
# st.pyplot(env.window.fig)
|