Spaces:
Running
Running
File size: 19,845 Bytes
be5548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.distributions.categorical import Categorical
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
import torch_ac
from utils.babyai_utils.supervised_losses import required_heads
import gym.spaces as spaces
def safe_relu(x):
return torch.maximum(x, torch.zeros_like(x))
# From https://github.com/ikostrikov/pytorch-a2c-ppo-acktr/blob/master/model.py
def initialize_parameters(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
m.weight.data.normal_(0, 1)
m.weight.data *= 1 / torch.sqrt(m.weight.data.pow(2).sum(1, keepdim=True))
if m.bias is not None:
m.bias.data.fill_(0)
# Inspired by FiLMedBlock from https://arxiv.org/abs/1709.07871
class FiLM(nn.Module):
def __init__(self, in_features, out_features, in_channels, imm_channels):
super().__init__()
self.conv1 = nn.Conv2d(
in_channels=in_channels, out_channels=imm_channels,
kernel_size=(3, 3), padding=1)
self.bn1 = nn.BatchNorm2d(imm_channels)
self.conv2 = nn.Conv2d(
in_channels=imm_channels, out_channels=out_features,
kernel_size=(3, 3), padding=1)
self.bn2 = nn.BatchNorm2d(out_features)
self.weight = nn.Linear(in_features, out_features)
self.bias = nn.Linear(in_features, out_features)
self.apply(initialize_parameters)
def forward(self, x, y):
x = F.relu(self.bn1(self.conv1(x)))
x = self.conv2(x)
weight = self.weight(y).unsqueeze(2).unsqueeze(3)
bias = self.bias(y).unsqueeze(2).unsqueeze(3)
out = x * weight + bias
# return F.relu(self.bn2(out)) # this causes an error in the new version of pytorch -> replaced by safe_relu
return safe_relu(self.bn2(out))
class ImageBOWEmbedding(nn.Module):
def __init__(self, space, embedding_dim):
super().__init__()
# self.max_value = max(space)
self.max_value = 255 # 255, because of "no_point" encoding, which is encoded as 255
self.space = space
self.embedding_dim = embedding_dim
self.embedding = nn.Embedding(self.space[-1] * self.max_value, embedding_dim)
self.apply(initialize_parameters)
def forward(self, inputs):
offsets = torch.Tensor([x * self.max_value for x in range(self.space[-1])]).to(inputs.device)
inputs = (inputs + offsets[None, :, None, None]).long()
return self.embedding(inputs).sum(1).permute(0, 3, 1, 2)
#notes: what they call instr is what we call text
#class ACModel(nn.Module, babyai.rl.RecurrentACModel):
# instr (them) == text (us)
class MultiModalBaby11ACModel(nn.Module, torch_ac.RecurrentACModel):
def __init__(self, obs_space, action_space,
image_dim=128, memory_dim=128, text_dim=128, dialog_dim=128,
use_text=False, use_dialogue=False, use_current_dialogue_only=False, lang_model="gru", use_memory=False,
arch="bow_endpool_res", aux_info=None, num_films=2):
super().__init__()
# store config
self.config = locals()
# multi dim
if action_space.shape == ():
raise ValueError("The action space is not multi modal. Use ACModel instead.")
if use_text: # for now we do not consider goal conditioned policies
raise ValueError("You should not use text but dialogue. --text is cheating.")
endpool = 'endpool' in arch
use_bow = 'bow' in arch
pixel = 'pixel' in arch
self.res = 'res' in arch
# Decide which components are enabled
self.use_text = use_text
self.use_dialogue = use_dialogue
self.use_current_dialogue_only = use_current_dialogue_only
self.use_memory = use_memory
self.arch = arch
self.lang_model = lang_model
self.aux_info = aux_info
if self.res and image_dim != 128:
raise ValueError(f"image_dim is {image_dim}, expected 128")
self.image_dim = image_dim
self.memory_dim = memory_dim
self.text_dim = text_dim
self.dialog_dim = dialog_dim
self.num_module = num_films
self.n_primitive_actions = action_space.nvec[0] + 1 # not move action added
self.move_switch_action = int(self.n_primitive_actions) - 1
self.n_utterance_actions = np.concatenate(([2], action_space.nvec[1:])) # binary to not speak
self.talk_switch_subhead = 0
self.env_action_space = action_space
self.model_raw_action_space = spaces.MultiDiscrete([self.n_primitive_actions, *self.n_utterance_actions])
self.obs_space = obs_space
# transform given 3d obs_space into what babyai11 baseline uses, i.e. 1d embedding size
n = obs_space["image"][0]
m = obs_space["image"][1]
nb_img_channels = self.obs_space['image'][2]
self.obs_space = ((n-1)//2-2)*((m-1)//2-2)*64
for part in self.arch.split('_'):
if part not in ['original', 'bow', 'pixels', 'endpool', 'res']:
raise ValueError("Incorrect architecture name: {}".format(self.arch))
# if not self.use_text:
# raise ValueError("FiLM architecture can be used when textuctions are enabled")
self.image_conv = nn.Sequential(*[
*([ImageBOWEmbedding(obs_space['image'], 128)] if use_bow else []),
*([nn.Conv2d(
in_channels=nb_img_channels, out_channels=128, kernel_size=(8, 8),
stride=8, padding=0)] if pixel else []),
nn.Conv2d(
in_channels=128 if use_bow or pixel else nb_img_channels, out_channels=128,
kernel_size=(3, 3) if endpool else (2, 2), stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
*([] if endpool else [nn.MaxPool2d(kernel_size=(2, 2), stride=2)]),
nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(3, 3), padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
*([] if endpool else [nn.MaxPool2d(kernel_size=(2, 2), stride=2)])
])
self.film_pool = nn.MaxPool2d(kernel_size=(7, 7) if endpool else (2, 2), stride=2)
# Define DIALOGUE embedding
if self.use_dialogue or self.use_current_dialogue_only:
if self.lang_model in ['gru', 'bigru', 'attgru']:
#self.word_embedding = nn.Embedding(obs_space["instr"], self.dialog_dim)
self.word_embedding = nn.Embedding(obs_space["text"], self.dialog_dim)
if self.lang_model in ['gru', 'bigru', 'attgru']:
gru_dim = self.dialog_dim
if self.lang_model in ['bigru', 'attgru']:
gru_dim //= 2
self.dialog_rnn = nn.GRU(
self.dialog_dim, gru_dim, batch_first=True,
bidirectional=(self.lang_model in ['bigru', 'attgru']))
self.final_dialog_dim = self.dialog_dim
else:
kernel_dim = 64
kernel_sizes = [3, 4]
self.dialog_convs = nn.ModuleList([
nn.Conv2d(1, kernel_dim, (K, self.dialog_dim)) for K in kernel_sizes])
self.final_dialog_dim = kernel_dim * len(kernel_sizes)
if self.lang_model == 'attgru':
self.memory2key = nn.Linear(self.memory_size, self.final_dialog_dim)
self.controllers = []
for ni in range(self.num_module):
mod = FiLM(
in_features=self.final_dialog_dim,
out_features=128 if ni < self.num_module-1 else self.image_dim,
in_channels=128, imm_channels=128)
self.controllers.append(mod)
self.add_module('FiLM_' + str(ni), mod)
# Define memory and resize image embedding
self.embedding_size = self.image_dim
if self.use_memory:
self.memory_rnn = nn.LSTMCell(self.image_dim, self.memory_dim)
self.embedding_size = self.semi_memory_size
# Define actor's model
self.actor = nn.Sequential(
nn.Linear(self.embedding_size, 64),
nn.Tanh(),
nn.Linear(64, self.n_primitive_actions)
)
self.talker = nn.ModuleList([
nn.Sequential(
nn.Linear(self.embedding_size, 64),
nn.Tanh(),
nn.Linear(64, n)
) for n in self.n_utterance_actions])
# Define critic's model
self.critic = nn.Sequential(
nn.Linear(self.embedding_size, 64),
nn.Tanh(),
nn.Linear(64, 1)
)
# Initialize parameters correctly
self.apply(initialize_parameters)
# Define head for extra info
if self.aux_info:
self.extra_heads = None
self.add_heads()
def add_heads(self):
'''
When using auxiliary tasks, the environment yields at each step some binary, continous, or multiclass
information. The agent needs to predict those information. This function add extra heads to the model
that output the predictions. There is a head per extra information (the head type depends on the extra
information type).
'''
self.extra_heads = nn.ModuleDict()
for info in self.aux_info:
if required_heads[info] == 'binary':
self.extra_heads[info] = nn.Linear(self.embedding_size, 1)
elif required_heads[info].startswith('multiclass'):
n_classes = int(required_heads[info].split('multiclass')[-1])
self.extra_heads[info] = nn.Linear(self.embedding_size, n_classes)
elif required_heads[info].startswith('continuous'):
if required_heads[info].endswith('01'):
self.extra_heads[info] = nn.Sequential(nn.Linear(self.embedding_size, 1), nn.Sigmoid())
else:
raise ValueError('Only continous01 is implemented')
else:
raise ValueError('Type not supported')
# initializing these parameters independently is done in order to have consistency of results when using
# supervised-loss-coef = 0 and when not using any extra binary information
self.extra_heads[info].apply(initialize_parameters)
def add_extra_heads_if_necessary(self, aux_info):
'''
This function allows using a pre-trained model without aux_info and add aux_info to it and still make
it possible to finetune.
'''
try:
if not hasattr(self, 'aux_info') or not set(self.aux_info) == set(aux_info):
self.aux_info = aux_info
self.add_heads()
except Exception:
raise ValueError('Could not add extra heads')
@property
def memory_size(self):
return 2 * self.semi_memory_size
@property
def semi_memory_size(self):
return self.memory_dim
def forward(self, obs, memory, dialog_embedding=None, return_embeddings=False):
if self.use_dialogue and dialog_embedding is None:
if not hasattr(obs, "utterance_history"):
raise ValueError("The environment need's to be updated to 'utterance' and 'utterance_history' keys'")
dialog_embedding = self._get_dialog_embedding(obs.utterance_history)
elif self.use_current_dialogue_only and dialog_embedding is None:
if not hasattr(obs, "utterance"):
raise ValueError("The environment need's to be updated to 'utterance' and 'utterance_history' keys'")
dialog_embedding = self._get_dialog_embedding(obs.utterance)
if (self.use_dialogue or self.use_current_dialogue_only) and self.lang_model == "attgru":
# outputs: B x L x D
# memory: B x M
#mask = (obs.instr != 0).float()
mask = (obs.utterance_history != 0).float()
# The mask tensor has the same length as obs.instr, and
# thus can be both shorter and longer than instr_embedding.
# It can be longer if instr_embedding is computed
# for a subbatch of obs.instr.
# It can be shorter if obs.instr is a subbatch of
# the batch that instr_embeddings was computed for.
# Here, we make sure that mask and instr_embeddings
# have equal length along dimension 1.
mask = mask[:, :dialog_embedding.shape[1]]
dialog_embedding = dialog_embedding[:, :mask.shape[1]]
keys = self.memory2key(memory)
pre_softmax = (keys[:, None, :] * dialog_embedding).sum(2) + 1000 * mask
attention = F.softmax(pre_softmax, dim=1)
dialog_embedding = (dialog_embedding * attention[:, :, None]).sum(1)
x = torch.transpose(torch.transpose(obs.image, 1, 3), 2, 3)
if 'pixel' in self.arch:
x /= 256.0
x = self.image_conv(x)
if (self.use_dialogue or self.use_current_dialogue_only):
for controller in self.controllers:
out = controller(x, dialog_embedding)
if self.res:
out += x
x = out
x = F.relu(self.film_pool(x))
x = x.reshape(x.shape[0], -1)
if self.use_memory:
hidden = (memory[:, :self.semi_memory_size], memory[:, self.semi_memory_size:])
hidden = self.memory_rnn(x, hidden)
embedding = hidden[0]
memory = torch.cat(hidden, dim=1)
else:
embedding = x
if hasattr(self, 'aux_info') and self.aux_info:
extra_predictions = {info: self.extra_heads[info](embedding) for info in self.extra_heads}
else:
extra_predictions = dict()
# x = self.actor(embedding)
# dist = Categorical(logits=F.log_softmax(x, dim=1))
x = self.actor(embedding)
primitive_actions_dist = Categorical(logits=F.log_softmax(x, dim=1))
x = self.critic(embedding)
value = x.squeeze(1)
utterance_actions_dists = [
Categorical(logits=F.log_softmax(
tal(embedding),
dim=1,
)) for tal in self.talker
]
dist = [primitive_actions_dist] + utterance_actions_dists
#return {'dist': dist, 'value': value, 'memory': memory, 'extra_predictions': extra_predictions}
if return_embeddings:
return dist, value, memory, embedding
else:
return dist, value, memory
def _get_dialog_embedding(self, dialog):
lengths = (dialog != 0).sum(1).long()
if self.lang_model == 'gru':
out, _ = self.dialog_rnn(self.word_embedding(dialog))
hidden = out[range(len(lengths)), lengths-1, :]
return hidden
elif self.lang_model in ['bigru', 'attgru']:
masks = (dialog != 0).float()
if lengths.shape[0] > 1:
seq_lengths, perm_idx = lengths.sort(0, descending=True)
iperm_idx = torch.LongTensor(perm_idx.shape).fill_(0)
if dialog.is_cuda: iperm_idx = iperm_idx.cuda()
for i, v in enumerate(perm_idx):
iperm_idx[v.data] = i
inputs = self.word_embedding(dialog)
inputs = inputs[perm_idx]
inputs = pack_padded_sequence(inputs, seq_lengths.data.cpu().numpy(), batch_first=True)
outputs, final_states = self.dialog_rnn(inputs)
else:
dialog = dialog[:, 0:lengths[0]]
outputs, final_states = self.dialog_rnn(self.word_embedding(dialog))
iperm_idx = None
final_states = final_states.transpose(0, 1).contiguous()
final_states = final_states.view(final_states.shape[0], -1)
if iperm_idx is not None:
outputs, _ = pad_packed_sequence(outputs, batch_first=True)
outputs = outputs[iperm_idx]
final_states = final_states[iperm_idx]
return outputs if self.lang_model == 'attgru' else final_states
else:
ValueError("Undefined lang_model architecture: {}".format(self.lang_model))
# add action sampling to fit our interaction pipeline
## baby ai [[Categorical(logits: torch.Size([16, 8])), Categorical(logits: torch.Size([16, 2])), Categorical(logits: torch.Size([16, 2]))]]
## mh ac [Categorical(logits: torch.Size([16, 8])), Categorical(logits: torch.Size([16, 2])), Categorical(logits: torch.Size([16, 2]))]
def det_action(self, dist):
return torch.stack([d.probs.argmax(dim=-1) for d in dist], dim=1)
def sample_action(self, dist):
return torch.stack([d.sample() for d in dist], dim=1)
def is_raw_action_speaking(self, action):
is_speaking = action[:, 1:][:, self.talk_switch_subhead] == 1 # talking heads are [1:]
return is_speaking
def no_speak_to_speak_action(self, action):
action[:, 1] = 1 # set speaking action to speak (1)
assert all(self.is_raw_action_speaking(action))
return action
def raw_action_to_act_speak_mask(self, action):
"""
Defines how the final action to be sent to the environment is computed
Does NOT define how gradients are propagated, see calculate_action_gradient_masks() for that
"""
assert action.shape[-1] == 4
assert self.model_raw_action_space.shape[0] == action.shape[-1]
act_mask = action[:, 0] != self.move_switch_action # acting head is [0]
# speak_mask = action[:, 1:][:, self.talk_switch_subhead] == 1 # talking heads are [1:]
speak_mask = self.is_raw_action_speaking(action)
return act_mask, speak_mask
def construct_final_action(self, action):
act_mask, speak_mask = self.raw_action_to_act_speak_mask(action)
nan_mask = np.stack((act_mask, speak_mask, speak_mask), axis=1).astype(float)
nan_mask[nan_mask == 0] = np.nan
assert self.talk_switch_subhead == 0
final_action = action[:, [True, False, True, True]] # we drop the talk_switch_subhead
final_action = nan_mask*final_action
assert self.env_action_space.shape[0] == final_action.shape[-1]
return final_action
# add calculate log probs to fit our interaction pipeline
def calculate_log_probs(self, dist, action):
return torch.stack([d.log_prob(action[:, i]) for i, d in enumerate(dist)], dim=1)
# add calculate action masks to fit our interaction pipeline
def calculate_action_gradient_masks(self, action):
"""
Defines how the gradients are propagated.
Moving head is always trained.
Speak switch is always trained.
Grammar heads are trained only when speak switch is ON
"""
_, speak_mask = self.raw_action_to_act_speak_mask(action)
mask = torch.stack(
(
torch.ones_like(speak_mask), # always train
torch.ones_like(speak_mask), # always train
speak_mask, # train only when speaking
speak_mask, # train only when speaking
), dim=1).detach()
assert action.shape == mask.shape
return mask
def get_config_dict(self):
del self.config['__class__']
self.config['self'] = str(self.config['self'])
self.config['action_space'] = self.config['action_space'].nvec.tolist()
return self.config
|