flokabukie commited on
Commit
7bbc3ed
1 Parent(s): 52229d0

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +4 -18
main.py CHANGED
@@ -8,18 +8,16 @@ import os
8
  from sklearn.preprocessing import StandardScaler
9
  import joblib
10
 
11
-
12
- """ Creating the FastAPI Instance. i.e. foundation for our API,
13
- which will be the main part of our project"""
14
 
15
  app = FastAPI(title="API")
16
 
17
 
18
  """We load a machine learning model and a scaler that help us make predictions based on data."""
19
- model = joblib.load('gbc.pkl',mmap_mode='r')
20
  scaler = joblib.load('scaler.pkl',mmap_mode='r')
21
 
22
- """We define a function that will make predictions using our model and scaler."""
23
  def predict(df, endpoint='simple'):
24
  # Scaling
25
  scaled_df = scaler.transform(df)
@@ -39,17 +37,8 @@ def predict(df, endpoint='simple'):
39
  return response
40
 
41
 
42
- """We create models for the data that our API will work with.
43
- We define what kind of information the data will have.
44
- It's like deciding what information we need to collect and how it should be organized."""
45
 
46
 
47
- """These classes define the data models used for API endpoints.
48
- The 'Patient' class represents a single patient's data,
49
- and the 'Patients' class represents a list of patients' data.
50
- The Patients class also includes a class method return_list_of_dict()
51
- that converts the Patients object into a list of dictionaries"""
52
-
53
  class Patient(BaseModel):
54
  Blood_Work_R1: float
55
  Blood_Pressure: float
@@ -59,10 +48,7 @@ class Patient(BaseModel):
59
  Patient_age: int
60
 
61
 
62
- """Next block of code defines different parts of our API and how it responds to different requests.
63
- It sets up a main page with a specific message, provides a checkup endpoint to receive
64
- optional parameters, and sets up prediction endpoints to receive medical data for making predictions,
65
- either for a single patient or multiple patients."""
66
 
67
  @app.get("/")
68
  def root():
 
8
  from sklearn.preprocessing import StandardScaler
9
  import joblib
10
 
11
+
 
 
12
 
13
  app = FastAPI(title="API")
14
 
15
 
16
  """We load a machine learning model and a scaler that help us make predictions based on data."""
17
+ model = joblib.load('model.pkl',mmap_mode='r')
18
  scaler = joblib.load('scaler.pkl',mmap_mode='r')
19
 
20
+
21
  def predict(df, endpoint='simple'):
22
  # Scaling
23
  scaled_df = scaler.transform(df)
 
37
  return response
38
 
39
 
 
 
 
40
 
41
 
 
 
 
 
 
 
42
  class Patient(BaseModel):
43
  Blood_Work_R1: float
44
  Blood_Pressure: float
 
48
  Patient_age: int
49
 
50
 
51
+
 
 
 
52
 
53
  @app.get("/")
54
  def root():