flichote commited on
Commit
f0c184b
1 Parent(s): 2cefab8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -1
app.py CHANGED
@@ -123,20 +123,41 @@
123
  # out=grad.Textbox(lines=1, label="Probablity of label being true is")
124
  # grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  from transformers import GPT2LMHeadModel,GPT2Tokenizer
127
  import gradio as grad
128
 
129
  mdl = GPT2LMHeadModel.from_pretrained('gpt2')
130
  gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')
131
 
 
132
  def generate(starting_text):
133
  tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
134
  gpt2_tensors = mdl.generate(tkn_ids)
135
- response = gpt2_tensors
 
 
 
136
  return response
 
137
  txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
138
  out=grad.Textbox(lines=1, label="Generated Tensors")
139
  grad.Interface(generate, inputs=txt, outputs=out).launch()
140
 
141
 
142
 
 
 
 
123
  # out=grad.Textbox(lines=1, label="Probablity of label being true is")
124
  # grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
125
 
126
+ # from transformers import GPT2LMHeadModel,GPT2Tokenizer
127
+ # import gradio as grad
128
+
129
+ # mdl = GPT2LMHeadModel.from_pretrained('gpt2')
130
+ # gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')
131
+
132
+ # def generate(starting_text):
133
+ # tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
134
+ # gpt2_tensors = mdl.generate(tkn_ids)
135
+ # response = gpt2_tensors
136
+ # return response
137
+ # txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
138
+ # out=grad.Textbox(lines=1, label="Generated Tensors")
139
+ # grad.Interface(generate, inputs=txt, outputs=out).launch()
140
  from transformers import GPT2LMHeadModel,GPT2Tokenizer
141
  import gradio as grad
142
 
143
  mdl = GPT2LMHeadModel.from_pretrained('gpt2')
144
  gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')
145
 
146
+
147
  def generate(starting_text):
148
  tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
149
  gpt2_tensors = mdl.generate(tkn_ids)
150
+ response=""
151
+ #response = gpt2_tensors
152
+ for i, x in enumerate(gpt2_tensors):
153
+ response=response+f"{i}: {gpt2_tkn.decode(x, skip_special_tokens=True)}"
154
  return response
155
+
156
  txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
157
  out=grad.Textbox(lines=1, label="Generated Tensors")
158
  grad.Interface(generate, inputs=txt, outputs=out).launch()
159
 
160
 
161
 
162
+
163
+