Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -76,19 +76,33 @@
|
|
76 |
# out=grad.Textbox(lines=10, label="Summary")
|
77 |
# grad.Interface(summarize, inputs=txt, outputs=out).launch()
|
78 |
|
79 |
-
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
import gradio as grad
|
81 |
-
|
82 |
-
pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
|
83 |
-
mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)
|
84 |
-
|
85 |
-
def summarize(text):
|
86 |
-
tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
|
87 |
-
translated_txt = mdl.generate(**tokens,num_return_sequences=5,max_length=200,temperature=1.5,num_beams=10)
|
88 |
-
response = pegasus_tkn.batch_decode(translated_txt, skip_special_tokens=True)
|
89 |
-
return response
|
90 |
-
txt=grad.Textbox(lines=10, label="English", placeholder="English Text here")
|
91 |
-
out=grad.Textbox(lines=10, label="Summary")
|
92 |
-
grad.Interface(summarize, inputs=txt, outputs=out).launch()
|
93 |
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# out=grad.Textbox(lines=10, label="Summary")
|
77 |
# grad.Interface(summarize, inputs=txt, outputs=out).launch()
|
78 |
|
79 |
+
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
80 |
+
# import gradio as grad
|
81 |
+
# mdl_name = "google/pegasus-xsum"
|
82 |
+
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
|
83 |
+
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)
|
84 |
+
|
85 |
+
# def summarize(text):
|
86 |
+
# tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
|
87 |
+
# translated_txt = mdl.generate(**tokens,num_return_sequences=5,max_length=200,temperature=1.5,num_beams=10)
|
88 |
+
# response = pegasus_tkn.batch_decode(translated_txt, skip_special_tokens=True)
|
89 |
+
# return response
|
90 |
+
# txt=grad.Textbox(lines=10, label="English", placeholder="English Text here")
|
91 |
+
# out=grad.Textbox(lines=10, label="Summary")
|
92 |
+
# grad.Interface(summarize, inputs=txt, outputs=out).launch()
|
93 |
+
|
94 |
+
from transformers import pipeline
|
95 |
import gradio as grad
|
96 |
+
zero_shot_classifier = pipeline("zero-shot-classification")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
|
99 |
+
def classify(text,labels):
|
100 |
+
classifer_labels = labels.split(",")
|
101 |
+
#["software", "politics", "love", "movies", "emergency", "advertisment","sports"]
|
102 |
+
response = zero_shot_classifier(text,classifer_labels)
|
103 |
+
return response
|
104 |
+
txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified")
|
105 |
+
labels=grad.Textbox(lines=1, label="Labels", placeholder="comma separated labels")
|
106 |
+
out=grad.Textbox(lines=1, label="Classification")
|
107 |
+
grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
|
108 |
+
|