File size: 901 Bytes
6ae27e8
 
 
 
 
 
a41bdbc
 
 
6ae27e8
a41bdbc
6ae27e8
 
 
a41bdbc
 
6ae27e8
 
a41bdbc
 
6ae27e8
 
 
 
 
 
a41bdbc
6ae27e8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import pandas as pd
import jax.numpy as jnp

from typing import List

# Defining cosine similarity using flax.
from backend.utils import load_model


def cos_sim(a, b):
    return jnp.matmul(a, jnp.transpose(b)) / (jnp.linalg.norm(a) * jnp.linalg.norm(b))


# We get similarity between embeddings.
def text_similarity(anchor: str, inputs: List[str], model_name: str):
    model = load_model(model_name)

    # Creating embeddings
    anchor_emb = model.encode(anchor)[None, :]
    inputs_emb = model.encode([input for input in inputs])

    # Obtaining similarity
    similarity = list(jnp.squeeze(cos_sim(anchor_emb, inputs_emb)))

    # Returning a Pandas' dataframe
    d = {'inputs': [input for input in inputs],
         'score': [round(similarity[i], 3) for i in range(len(similarity))]}
    df = pd.DataFrame(d, columns=['inputs', 'score'])

    return df.sort_values('score', ascending=False)