Spaces:
Build error
Build error
File size: 2,441 Bytes
f1d50b1 7326e2c e4b9c8b 8ff0261 5dce03a e4b9c8b 7326e2c f1d50b1 e4b9c8b f1d50b1 e4b9c8b 2cf3514 8b6d3c7 fedeff8 2cf3514 e4b9c8b 7326e2c e4b9c8b 7326e2c e4b9c8b 7326e2c 8ff0261 7326e2c e4b9c8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import streamlit as st
import requests
import numpy as np
import jax
import jax.numpy as jnp
from PIL import Image
import pandas as pd
from utils import load_model
def app(model_name):
model, processor = load_model(f"koclip/{model_name}")
st.title("Zero-shot Image Classification")
st.markdown(
"""
This demonstration explores capability of KoCLIP in the field of Zero-Shot Prediction. This demo takes a set of image and captions from, and predicts the most likely label among the different captions given.
KoCLIP is a retraining of OpenAI's CLIP model using 82,783 images from [MSCOCO](https://cocodataset.org/#home) dataset and Korean caption annotations. Korean translation of caption annotations were obtained from [AI Hub](https://aihub.or.kr/keti_data_board/visual_intelligence). Base model `koclip` uses `klue/roberta` as text encoder and `openai/clip-vit-base-patch32` as image encoder. Larger model `koclip-large` uses `klue/roberta` as text encoder and bigger `google/vit-large-patch16-224` as image encoder.
"""
)
query1 = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
query2 = st.text_input("or a URL to an image...")
captions = st.text_input(
"Enter candidate captions in comma-separated form.",
value="๊ท์ฌ์ด ๊ณ ์์ด,๋ฉ์๋ ๊ฐ์์ง,ํธ๋์คํฌ๋จธ"
)
if st.button("์ง๋ฌธ (Query)"):
if not any([query1, query2]):
st.error("Please upload an image or paste an image URL.")
else:
image_data = query1 if query1 is not None else requests.get(query2, stream=True).raw
image = Image.open(image_data)
st.image(image)
captions = captions.split(",")
inputs = processor(text=captions, images=image, return_tensors="jax", padding=True)
inputs["pixel_values"] = jnp.transpose(
inputs["pixel_values"], axes=[0, 2, 3, 1]
)
outputs = model(**inputs)
probs = jax.nn.softmax(outputs.logits_per_image, axis=1)
score_dict = {captions[idx]: prob for idx, prob in enumerate(*probs)}
df = pd.DataFrame(score_dict.values(), index=score_dict.keys())
st.bar_chart(df)
# for idx, prob in sorted(enumerate(*probs), key=lambda x: x[1], reverse=True):
# st.text(f"Score: `{prob}`, {captions[idx]}")
|