Spaces:
Build error
Build error
File size: 1,313 Bytes
cf349fd b22b27a f1d50b1 b22b27a cf349fd b22b27a cf349fd b22b27a cf349fd b22b27a cf349fd b22b27a cf349fd f1d50b1 b22b27a f1d50b1 0e0bacc f1d50b1 b22b27a f1d50b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import nmslib
import numpy as np
import streamlit as st
from transformers import AutoTokenizer, CLIPProcessor, ViTFeatureExtractor
from koclip import FlaxHybridCLIP
@st.cache(allow_output_mutation=True)
def load_index(img_file):
filenames, embeddings = [], []
lines = open(img_file, "r")
for line in lines:
cols = line.strip().split("\t")
filename = cols[0]
embedding = [float(x) for x in cols[1].split(",")]
filenames.append(filename)
embeddings.append(embedding)
embeddings = np.array(embeddings)
index = nmslib.init(method="hnsw", space="cosinesimil")
index.addDataPointBatch(embeddings)
index.createIndex({"post": 2}, print_progress=True)
return filenames, index
@st.cache(allow_output_mutation=True)
def load_model(model_name="koclip/koclip-base"):
assert model_name in {"koclip/koclip-base", "koclip/koclip-large"}
model = FlaxHybridCLIP.from_pretrained(model_name)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
processor.tokenizer = AutoTokenizer.from_pretrained("klue/roberta-large")
if model_name == "koclip/koclip-large":
processor.feature_extractor = ViTFeatureExtractor.from_pretrained(
"google/vit-large-patch16-224"
)
return model, processor
|