Spaces:
Runtime error
Runtime error
File size: 6,181 Bytes
c6d338c be6f31c c6d338c e770a74 be6f31c e770a74 ba901f8 8136881 32d232b 8136881 bc7bea3 8136881 c6d338c 8136881 c6d338c e770a74 ba901f8 c6d338c 2b4c283 c6d338c 28efd24 c6d338c 2b4c283 c6d338c 28863a3 c6d338c 2b4c283 c6d338c e9acb28 c6d338c e770a74 c6d338c 0d55d70 66d7cd7 0d55d70 66eca30 b49a705 c634156 0d55d70 c6d338c b3e804f c6d338c e770a74 c6d338c d38538c e770a74 c6d338c bc7bea3 c6d338c 28efd24 c6d338c 28efd24 e9acb28 bc7bea3 e9acb28 d427812 54ddfdf 50e2ceb d427812 e9acb28 7f74f8c e770a74 32d232b e770a74 32d232b e770a74 32d232b 956c93c 32d232b 0e919bc 32d232b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import json
import requests
from mtranslate import translate
from prompts import PROMPT_LIST
import streamlit as st
import random
import fasttext
headers = {}
LOGO = "huggingwayang.png"
MODELS = {
"GPT-2 Small": {
"url": "https://api-inference.huggingface.co/models/flax-community/gpt2-small-indonesian"
},
"GPT-2 Medium": {
"url": "https://api-inference.huggingface.co/models/flax-community/gpt2-medium-indonesian"
},
}
def get_image(text: str):
url = "https://wikisearch.uncool.ai/get_image/"
try:
payload = {
"text": text,
"image_width": 400
}
data = json.dumps(payload)
response = requests.request("POST", url, headers=headers, data=data)
print(response.content)
image = json.loads(response.content.decode("utf-8"))["url"]
except:
image = ""
return image
def query(payload, model_name):
data = json.dumps(payload)
# print("model url:", MODELS[model_name]["url"])
response = requests.request("POST", MODELS[model_name]["url"], headers=headers, data=data)
return json.loads(response.content.decode("utf-8"))
def process(text: str,
model_name: str,
max_len: int,
temp: float,
top_k: int,
top_p: float):
payload = {
"inputs": text,
"parameters": {
"max_new_tokens": max_len,
"top_k": top_k,
"top_p": top_p,
"temperature": temp,
"repetition_penalty": 2.0,
},
"options": {
"use_cache": True,
}
}
return query(payload, model_name)
st.set_page_config(page_title="Indonesian GPT-2 Demo")
st.title("Indonesian GPT-2")
try:
token = st.secrets["flax_community_token"]
headers = {"Authorization": f"Bearer {token}"}
except FileNotFoundError:
print(f"Token is not found")
ft_model = fasttext.load_model('lid.176.ftz')
# Sidebar
st.sidebar.image(LOGO)
st.sidebar.subheader("Configurable parameters")
max_len = st.sidebar.number_input(
"Maximum length",
value=100,
help="The maximum length of the sequence to be generated."
)
temp = st.sidebar.slider(
"Temperature",
value=1.0,
min_value=0.1,
max_value=100.0,
help="The value used to module the next token probabilities."
)
top_k = st.sidebar.number_input(
"Top k",
value=10,
help="The number of highest probability vocabulary tokens to keep for top-k-filtering."
)
top_p = st.sidebar.number_input(
"Top p",
value=0.95,
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation."
)
# do_sample = st.sidebar.selectbox('Sampling?', (True, False), help="Whether or not to use sampling; use greedy decoding otherwise.")
st.markdown(
"""
This demo uses the [small](https://huggingface.co/flax-community/gpt2-small-indonesian) and
[medium](https://huggingface.co/flax-community/gpt2-medium-indonesian) Indonesian GPT2 model
trained on the Indonesian [Oscar](https://huggingface.co/datasets/oscar), [MC4](https://huggingface.co/datasets/mc4)
and [Wikipedia](https://huggingface.co/datasets/wikipedia) dataset. We created it as part of the
[Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/).
The demo supports "multi language" ;-), feel free to try a prompt on your language. We are also experimenting with
the sentence based image search using Wikipedia passages encoded with distillbert, and search the encoded sentence
in the encoded passages using Facebook's Faiss.
"""
)
model_name = st.selectbox('Model',(['GPT-2 Small', 'GPT-2 Medium']))
ALL_PROMPTS = list(PROMPT_LIST.keys())+["Custom"]
prompt = st.selectbox('Please choose a predefined prompt or create your custom text.', ALL_PROMPTS, index=len(ALL_PROMPTS)-1)
if prompt == "Custom":
prompt_box = "Feel free to write text in any language"
else:
prompt_box = random.choice(PROMPT_LIST[prompt])
text = st.text_area("Enter text", prompt_box)
if st.button("Run"):
with st.spinner(text="Getting results..."):
lang_predictions, lang_probability = ft_model.predict(text.replace("\n", " "), k=3)
# print(f"lang: {lang_predictions}, {lang_probability}")
if "__label__id" in lang_predictions:
lang = "id"
else:
lang = lang_predictions[0].replace("__label__", "")
text = translate(text, "id", lang)
# print(f"{lang}: {text}")
st.subheader("Result")
# print(f"maxlen:{max_len}, temp:{temp}, top_k:{top_k}, top_p:{top_p}")
result = process(text=text,
model_name=model_name,
max_len=int(max_len),
temp=temp,
top_k=int(top_k),
top_p=float(top_p))
# print("result:", result)
if "error" in result:
if type(result["error"]) is str:
st.write(f'{result["error"]}.', end=" ")
if "estimated_time" in result:
st.write(f'Please try it again in about {result["estimated_time"]:.0f} seconds')
else:
if type(result["error"]) is list:
for error in result["error"]:
st.write(f'{error}')
else:
result = result[0]["generated_text"]
st.write(result.replace("\n", " \n"))
st.text("Translation")
translation = translate(result, "en", "id")
if lang == "id":
st.write(translation.replace("\n", " \n"))
else:
st.write(translate(result, lang, "id").replace("\n", " \n"))
image_cat = "https://media.giphy.com/media/vFKqnCdLPNOKc/giphy.gif"
image = get_image(translation.replace("\"", "'"))
if image is not "":
st.image(image, width=400)
else:
# display cat image if no image found
st.image(image_cat, width=400) |