File size: 5,852 Bytes
4e53efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import gradio as gr
import numpy as np
import cv2
import supervision as sv    # For annotations
from ultralytics import YOLO
import glob
import json
import ast

# TODO: finetune/test bigger models
model_1 = YOLO('best.pt')   # Finetuned YoloV8s 
# model_2 = 
# model_3 =

box_annotator = sv.BoxAnnotator(
        thickness=2,
        text_thickness=2,
        text_scale=1
    )

def show_preds_image(option, image_path):

    predict = []

    if(option == "yolov8s-ft-yalta-ai-segmonto-manuscript"):
        model = model_1
    # if(option == "yolov8m-ft-yalta-ai-segmonto-manuscript"):
    #     model = model_2
    # if(option == "yolov8l-ft-yalta-ai-segmonto-manuscript"):
    #     model = model_3
    
    image = cv2.imread(image_path)

    outputs = model.predict(source=image_path, device="cpu")
 
 ##############
    # result = outputs[0]
    # bboxes = np.array(result.boxes.xyxy, dtype="int") # result.boxes.xyxy.cpu()
    # classes = np.array(result.boxes.cls, dtype="int")
    
    # for cls, bbox in zip(classes, bboxes):
    #     (x, y, x2, y2) = bbox
    #     cv2.rectangle(frame, (x, y), (x2, y2), (0, 0, 225), 3)
    #     # cv2.putText(frame, str(cls), (x, y - 5), cv2.FONT_HERSHEY_PLAIN, 2, (0, 0, 225), 2)
    #     cv2.putText(frame, str(model.names[int(cls)]), (x, y - 5), cv2.FONT_HERSHEY_PLAIN, 2, (0, 0, 225), 2)

    # return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
################

    result = outputs[0]
    # detections = sv.Detections.from_yolov8(result)    # Deprecated
    detections = sv.Detections.from_ultralytics(result)

    labels = [
        f"{model.model.names[class_id]} {confidence:0.2f}"
        for _, _, confidence, class_id, _
        in detections
    ]
    frame = box_annotator.annotate(
        scene=image, 
        detections=detections, 
        labels=labels
    )

    # Build the dictionary
    predict.append(
        {
            "label": [ast.literal_eval(model.model.names[id]) for id in detections.class_id.tolist()],
            # The list of coordinates of the points of the polygon.
            "bbox": detections.xyxy.tolist(),
            # Confidence that the model predicts the polygon in the right place
            "confidence": detections.confidence.tolist(), 
        }
    )

    # captions = {
    #     f"{model.model.names[class_id]}": float("{:.2f}".format(confidence))
    #     for _, _, confidence, class_id, _
    #     in detections
    # }

    return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), json.dumps(predict, indent=2)#, captions
 
title = "<h1 style='text-align: center'>YoloV8 Medieval Manuscript Region Detection ๐Ÿ“œ๐Ÿชถ - SegmOnto Ontology</h1>"
description="""Treating page layout recognition on historical documents as an object detection task (compared to the usual pixel segmentation approach). Model finetuned on **YALTAi Segmonto Manuscript and Early Printed Book Dataset** (HF `dataset card`: [biglam/yalta_ai_segmonto_manuscript_dataset](https://huggingface.co/datasets/biglam/yalta_ai_segmonto_manuscript_dataset)).
* Note that this demo is running on a small resource environment, `basic CPU plan` (`2 vCPU, 16GB RAM`).
"""
article = "<p style='text-align: center'>ArXiv: <a href='https://arxiv.org/abs/2207.11230v1' target='_blank'>You Actually Look Twice At it (YALTAi): using an object detection approach instead of region segmentation within the Kraken engine</a></p>"

with gr.Blocks(theme=gr.themes.Soft()) as demo:

    gr.HTML(title)
    gr.Markdown(description)
    # gr.HTML(description)

    with gr.Row():
        with gr.Column(scale=1, variant="panel"):
            with gr.Row():
                input_image = gr.components.Image(type="filepath", label="Input Image", height=350)
            
            with gr.Row():
                input_model = gr.components.Dropdown(["yolov8s-ft-yalta-ai-segmonto-manuscript"], label="Model")
            
            with gr.Row():
                btn_clear = gr.Button(value="Clear")
                btn = gr.Button(value="Submit")
                # btn.click(show_preds_image, inputs=[input_model, input_image], outputs=output)
            
            with gr.Row():  # gr.Column()   
                with gr.Accordion(label="Choose an example:", open=False):
                    gr.Examples(
                        examples = [["yolov8s-ft-yalta-ai-segmonto-manuscript", str(file)] for file in glob.glob("./examples/*.jpg")],
                        inputs = [input_model, input_image],
                        # label="Samples",
                    )
    
        with gr.Column(scale=1, variant="panel"):
            with gr.Tab("Output"):
                with gr.Row():
                    output = gr.components.Image(type="numpy", label="Output", height=500)
                
                # with gr.Row():
                #     btn_flag = gr.Button(value="Flag")  # TODO

                # with gr.Row():
                #     captions = gr.Dataframe(headers=["Label", "Confidence"])
            
            with gr.Tab("JSON Output"):
                with gr.Row():
                    # Create a column so that the JSON output doesn't take the full size of the page
                    with gr.Column():
                        # Create a collapsible region
                        with gr.Accordion(label="JSON Output", open="False"):
                            # Generates a json with the model predictions
                            json_output = gr.JSON(label="JSON")

        btn.click(show_preds_image, inputs=[input_model, input_image], outputs=[output, json_output])
        btn_clear.click(lambda: [None, None, None, None], outputs=[input_image, input_model, output, json_output])
        # btn_flag.click()
    
    with gr.Row():
        gr.HTML(article)    

if __name__ =="__main__":

    demo.queue().launch()   # share=True, auth=("username", "password")