PoTaTo721's picture
Update to V1.5
b2eb230
import gc
import os
import re
from audio_separator.separator import Separator
os.environ["MODELSCOPE_CACHE"] = "./.cache/funasr"
os.environ["UVR5_CACHE"] = "./.cache/uvr5-models"
import json
import subprocess
from pathlib import Path
import click
import torch
from loguru import logger
from pydub import AudioSegment
from silero_vad import get_speech_timestamps, load_silero_vad, read_audio
from tqdm import tqdm
from tools.file import AUDIO_EXTENSIONS, VIDEO_EXTENSIONS, list_files
from tools.sensevoice.auto_model import AutoModel
def uvr5_cli(
audio_dir: Path,
output_folder: Path,
audio_files: list[Path] | None = None,
output_format: str = "flac",
model: str = "BS-Roformer-Viperx-1297.ckpt",
):
# ["BS-Roformer-Viperx-1297.ckpt", "BS-Roformer-Viperx-1296.ckpt", "BS-Roformer-Viperx-1053.ckpt", "Mel-Roformer-Viperx-1143.ckpt"]
sepr = Separator(
model_file_dir=os.environ["UVR5_CACHE"],
output_dir=output_folder,
output_format=output_format,
)
dictmodel = {
"BS-Roformer-Viperx-1297.ckpt": "model_bs_roformer_ep_317_sdr_12.9755.ckpt",
"BS-Roformer-Viperx-1296.ckpt": "model_bs_roformer_ep_368_sdr_12.9628.ckpt",
"BS-Roformer-Viperx-1053.ckpt": "model_bs_roformer_ep_937_sdr_10.5309.ckpt",
"Mel-Roformer-Viperx-1143.ckpt": "model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt",
}
roformer_model = dictmodel[model]
sepr.load_model(roformer_model)
if audio_files is None:
audio_files = list_files(
path=audio_dir, extensions=AUDIO_EXTENSIONS, recursive=True
)
total_files = len(audio_files)
print(f"{total_files} audio files found")
res = []
for audio in tqdm(audio_files, desc="Denoising: "):
file_path = str(audio_dir / audio)
sep_out = sepr.separate(file_path)
if isinstance(sep_out, str):
res.append(sep_out)
elif isinstance(sep_out, list):
res.extend(sep_out)
del sepr
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
return res, roformer_model
def get_sample_rate(media_path: Path):
result = subprocess.run(
[
"ffprobe",
"-v",
"quiet",
"-print_format",
"json",
"-show_streams",
str(media_path),
],
capture_output=True,
text=True,
check=True,
)
media_info = json.loads(result.stdout)
for stream in media_info.get("streams", []):
if stream.get("codec_type") == "audio":
return stream.get("sample_rate")
return "44100" # Default sample rate if not found
def convert_to_mono(src_path: Path, out_path: Path, out_fmt: str = "wav"):
sr = get_sample_rate(src_path)
out_path.parent.mkdir(parents=True, exist_ok=True)
if src_path.resolve() == out_path.resolve():
output = str(out_path.with_stem(out_path.stem + f"_{sr}"))
else:
output = str(out_path)
subprocess.run(
[
"ffmpeg",
"-loglevel",
"error",
"-i",
str(src_path),
"-acodec",
"pcm_s16le" if out_fmt == "wav" else "flac",
"-ar",
sr,
"-ac",
"1",
"-y",
output,
],
check=True,
)
return out_path
def convert_video_to_audio(video_path: Path, audio_dir: Path):
cur_dir = audio_dir / video_path.relative_to(audio_dir).parent
vocals = [
p
for p in cur_dir.glob(f"{video_path.stem}_(Vocals)*.*")
if p.suffix in AUDIO_EXTENSIONS
]
if len(vocals) > 0:
return vocals[0]
audio_path = cur_dir / f"{video_path.stem}.wav"
convert_to_mono(video_path, audio_path)
return audio_path
@click.command()
@click.option("--audio-dir", required=True, help="Directory containing audio files")
@click.option(
"--save-dir", required=True, help="Directory to save processed audio files"
)
@click.option("--device", default="cuda", help="Device to use [cuda / cpu]")
@click.option("--language", default="auto", help="Language of the transcription")
@click.option(
"--max_single_segment_time",
default=20000,
type=int,
help="Maximum of Output single audio duration(ms)",
)
@click.option("--fsmn-vad/--silero-vad", default=False)
@click.option("--punc/--no-punc", default=False)
@click.option("--denoise/--no-denoise", default=False)
@click.option("--save_emo/--no_save_emo", default=False)
def main(
audio_dir: str,
save_dir: str,
device: str,
language: str,
max_single_segment_time: int,
fsmn_vad: bool,
punc: bool,
denoise: bool,
save_emo: bool,
):
audios_path = Path(audio_dir)
save_path = Path(save_dir)
save_path.mkdir(parents=True, exist_ok=True)
video_files = list_files(
path=audio_dir, extensions=VIDEO_EXTENSIONS, recursive=True
)
v2a_files = [convert_video_to_audio(p, audio_dir) for p in video_files]
if denoise:
VOCAL = "_(Vocals)"
original_files = [
p
for p in audios_path.glob("**/*")
if p.suffix in AUDIO_EXTENSIONS and VOCAL not in p.stem
]
_, cur_model = uvr5_cli(
audio_dir=audio_dir, output_folder=audio_dir, audio_files=original_files
)
need_remove = [p for p in audios_path.glob("**/*(Instrumental)*")]
need_remove.extend(original_files)
for _ in need_remove:
_.unlink()
vocal_files = [
p
for p in audios_path.glob("**/*")
if p.suffix in AUDIO_EXTENSIONS and VOCAL in p.stem
]
for f in vocal_files:
fn, ext = f.stem, f.suffix
v_pos = fn.find(VOCAL + "_" + cur_model.split(".")[0])
if v_pos != -1:
new_fn = fn[: v_pos + len(VOCAL)]
new_f = f.with_name(new_fn + ext)
f = f.rename(new_f)
convert_to_mono(f, f, "flac")
f.unlink()
audio_files = list_files(
path=audio_dir, extensions=AUDIO_EXTENSIONS, recursive=True
)
logger.info("Loading / Downloading Funasr model...")
model_dir = "iic/SenseVoiceSmall"
vad_model = "fsmn-vad" if fsmn_vad else None
vad_kwargs = {"max_single_segment_time": max_single_segment_time}
punc_model = "ct-punc" if punc else None
manager = AutoModel(
model=model_dir,
trust_remote_code=False,
vad_model=vad_model,
vad_kwargs=vad_kwargs,
punc_model=punc_model,
device=device,
)
if not fsmn_vad and vad_model is None:
vad_model = load_silero_vad()
logger.info("Model loaded.")
pattern = re.compile(r"_\d{3}\.")
for file_path in tqdm(audio_files, desc="Processing audio file"):
if pattern.search(file_path.name):
# logger.info(f"Skipping {file_path} as it has already been processed.")
continue
file_stem = file_path.stem
file_suffix = file_path.suffix
rel_path = Path(file_path).relative_to(audio_dir)
(save_path / rel_path.parent).mkdir(parents=True, exist_ok=True)
audio = AudioSegment.from_file(file_path)
cfg = dict(
cache={},
language=language, # "zh", "en", "yue", "ja", "ko", "nospeech"
use_itn=False,
batch_size_s=60,
)
if fsmn_vad:
elapsed, vad_res = manager.vad(input=str(file_path), **cfg)
else:
wav = read_audio(
str(file_path)
) # backend (sox, soundfile, or ffmpeg) required!
audio_key = file_path.stem
audio_val = []
speech_timestamps = get_speech_timestamps(
wav,
vad_model,
max_speech_duration_s=max_single_segment_time // 1000,
return_seconds=True,
)
audio_val = [
[int(timestamp["start"] * 1000), int(timestamp["end"] * 1000)]
for timestamp in speech_timestamps
]
vad_res = []
vad_res.append(dict(key=audio_key, value=audio_val))
res = manager.inference_with_vadres(
input=str(file_path), vad_res=vad_res, **cfg
)
for i, info in enumerate(res):
[start_ms, end_ms] = info["interval"]
text = info["text"]
emo = info["emo"]
sliced_audio = audio[start_ms:end_ms]
audio_save_path = (
save_path / rel_path.parent / f"{file_stem}_{i:03d}{file_suffix}"
)
sliced_audio.export(audio_save_path, format=file_suffix[1:])
print(f"Exported {audio_save_path}: {text}")
transcript_save_path = (
save_path / rel_path.parent / f"{file_stem}_{i:03d}.lab"
)
with open(
transcript_save_path,
"w",
encoding="utf-8",
) as f:
f.write(text)
if save_emo:
emo_save_path = save_path / rel_path.parent / f"{file_stem}_{i:03d}.emo"
with open(
emo_save_path,
"w",
encoding="utf-8",
) as f:
f.write(emo)
if audios_path.resolve() == save_path.resolve():
file_path.unlink()
if __name__ == "__main__":
main()
exit(0)
from funasr.utils.postprocess_utils import rich_transcription_postprocess
# Load the audio file
audio_path = Path(r"D:\PythonProject\ok\1_output_(Vocals).wav")
model_dir = "iic/SenseVoiceSmall"
m, kwargs = SenseVoiceSmall.from_pretrained(model=model_dir, device="cuda:0")
m.eval()
res = m.inference(
data_in=f"{kwargs['model_path']}/example/zh.mp3",
language="auto", # "zh", "en", "yue", "ja", "ko", "nospeech"
use_itn=False,
ban_emo_unk=False,
**kwargs,
)
print(res)
text = rich_transcription_postprocess(res[0][0]["text"])
print(text)