Spaces:
Runtime error
Runtime error
File size: 6,978 Bytes
0825a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
'''
import gradio as gr
def greet(name):
return "Hello " + name + "!!"
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
'''
import os
HOME = os.getcwd()
print(HOME)
#Upload your own video
SOURCE_VIDEO_PATH = f"{HOME}/testing.mp4"
from IPython import display
display.clear_output()
import ultralytics
ultralytics.checks()
%cd {HOME}
!git clone https://github.com/ifzhang/ByteTrack.git
%cd {HOME}/ByteTrack
# workaround related to https://github.com/roboflow/notebooks/issues/80
!sed -i 's/onnx==1.8.1/onnx==1.9.0/g' requirements.txt
!pip3 install -q -r requirements.txt
!python3 setup.py -q develop
!pip install -q cython_bbox
!pip install -q onemetric
# workaround related to https://github.com/roboflow/notebooks/issues/112 and https://github.com/roboflow/notebooks/issues/106
!pip install -q loguru lap thop
from IPython import display
display.clear_output()
import sys
sys.path.append(f"{HOME}/ByteTrack")
import yolox
print("yolox.__version__:", yolox.__version__)
from yolox.tracker.byte_tracker import BYTETracker, STrack
from onemetric.cv.utils.iou import box_iou_batch
from dataclasses import dataclass
@dataclass(frozen=True)
class BYTETrackerArgs:
track_thresh: float = 0.25
track_buffer: int = 30
match_thresh: float = 0.8
aspect_ratio_thresh: float = 3.0
min_box_area: float = 1.0
mot20: bool = False
from IPython import display
display.clear_output()
import supervision
print("supervision.__version__:", supervision.__version__)
from supervision.draw.color import ColorPalette
from supervision.geometry.dataclasses import Point
from supervision.video.dataclasses import VideoInfo
from supervision.video.source import get_video_frames_generator
from supervision.video.sink import VideoSink
from supervision.notebook.utils import show_frame_in_notebook
from supervision.tools.detections import Detections, BoxAnnotator
from supervision.tools.line_counter import LineCounter, LineCounterAnnotator
from typing import List
import numpy as np
# converts Detections into format that can be consumed by match_detections_with_tracks function
def detections2boxes(detections: Detections) -> np.ndarray:
return np.hstack((
detections.xyxy,
detections.confidence[:, np.newaxis]
))
# converts List[STrack] into format that can be consumed by match_detections_with_tracks function
def tracks2boxes(tracks: List[STrack]) -> np.ndarray:
return np.array([
track.tlbr
for track
in tracks
], dtype=float)
# matches our bounding boxes with predictions
def match_detections_with_tracks(
detections: Detections,
tracks: List[STrack]
) -> Detections:
if not np.any(detections.xyxy) or len(tracks) == 0:
return np.empty((0,))
tracks_boxes = tracks2boxes(tracks=tracks)
iou = box_iou_batch(tracks_boxes, detections.xyxy)
track2detection = np.argmax(iou, axis=1)
tracker_ids = [None] * len(detections)
for tracker_index, detection_index in enumerate(track2detection):
if iou[tracker_index, detection_index] != 0:
tracker_ids[detection_index] = tracks[tracker_index].track_id
return tracker_ids
# settings
MODEL = "yolov8x.pt"
from ultralytics import YOLO
model = YOLO(MODEL)
model.fuse()
# dict maping class_id to class_name
CLASS_NAMES_DICT = model.model.names
# class_ids of interest - car, motorcycle, bus and truck
CLASS_ID = [2, 3, 5, 7]
# create frame generator
generator = get_video_frames_generator(SOURCE_VIDEO_PATH)
# create instance of BoxAnnotator
box_annotator = BoxAnnotator(color=ColorPalette(), thickness=4, text_thickness=4, text_scale=2)
# acquire first video frame
iterator = iter(generator)
frame = next(iterator)
# model prediction on single frame and conversion to supervision Detections
results = model(frame)
detections = Detections(
xyxy=results[0].boxes.xyxy.cpu().numpy(),
confidence=results[0].boxes.conf.cpu().numpy(),
class_id=results[0].boxes.cls.cpu().numpy().astype(int)
)
# format custom labels
labels = [
f"{CLASS_NAMES_DICT[class_id]} {confidence:0.2f}"
for _, confidence, class_id, tracker_id
in detections
]
# annotate and display frame
frame = box_annotator.annotate(frame=frame, detections=detections, labels=labels)
%matplotlib inline
show_frame_in_notebook(frame, (16, 16))
# settings
# Please settings the line for the counting
LINE_START = Point(50, 430)
LINE_END = Point(1280-50, 430)
TARGET_VIDEO_PATH = f"{HOME}/vehicle-counting-result.mp4"
VideoInfo.from_video_path(SOURCE_VIDEO_PATH)
from tqdm.notebook import tqdm
# create BYTETracker instance
byte_tracker = BYTETracker(BYTETrackerArgs())
# create VideoInfo instance
video_info = VideoInfo.from_video_path(SOURCE_VIDEO_PATH)
# create frame generator
generator = get_video_frames_generator(SOURCE_VIDEO_PATH)
# create LineCounter instance
line_counter = LineCounter(start=LINE_START, end=LINE_END)
# create instance of BoxAnnotator and LineCounterAnnotator
box_annotator = BoxAnnotator(color=ColorPalette(), thickness=4, text_thickness=4, text_scale=2)
line_annotator = LineCounterAnnotator(thickness=4, text_thickness=4, text_scale=2)
# open target video file
with VideoSink(TARGET_VIDEO_PATH, video_info) as sink:
# loop over video frames
for frame in tqdm(generator, total=video_info.total_frames):
# model prediction on single frame and conversion to supervision Detections
results = model(frame)
detections = Detections(
xyxy=results[0].boxes.xyxy.cpu().numpy(),
confidence=results[0].boxes.conf.cpu().numpy(),
class_id=results[0].boxes.cls.cpu().numpy().astype(int)
)
# filtering out detections with unwanted classes
mask = np.array([class_id in CLASS_ID for class_id in detections.class_id], dtype=bool)
detections.filter(mask=mask, inplace=True)
# tracking detections
tracks = byte_tracker.update(
output_results=detections2boxes(detections=detections),
img_info=frame.shape,
img_size=frame.shape
)
tracker_id = match_detections_with_tracks(detections=detections, tracks=tracks)
detections.tracker_id = np.array(tracker_id)
# filtering out detections without trackers
mask = np.array([tracker_id is not None for tracker_id in detections.tracker_id], dtype=bool)
detections.filter(mask=mask, inplace=True)
# format custom labels
labels = [
f"#{tracker_id} {CLASS_NAMES_DICT[class_id]} {confidence:0.2f}"
for _, confidence, class_id, tracker_id
in detections
]
# updating line counter
line_counter.update(detections=detections)
# annotate and display frame
frame = box_annotator.annotate(frame=frame, detections=detections, labels=labels)
line_annotator.annotate(frame=frame, line_counter=line_counter)
sink.write_frame(frame)
|