Update Gradio
Browse filesAdd Spanish datasets
- requirements.txt +1 -1
- src/about.py +11 -0
requirements.txt
CHANGED
@@ -2,7 +2,7 @@ APScheduler==3.10.1
|
|
2 |
black==23.11.0
|
3 |
click==8.1.3
|
4 |
datasets==2.14.5
|
5 |
-
gradio
|
6 |
gradio_client==0.7.0
|
7 |
huggingface-hub>=0.18.0
|
8 |
matplotlib==3.7.1
|
|
|
2 |
black==23.11.0
|
3 |
click==8.1.3
|
4 |
datasets==2.14.5
|
5 |
+
gradio>=4.7.1
|
6 |
gradio_client==0.7.0
|
7 |
huggingface-hub>=0.18.0
|
8 |
matplotlib==3.7.1
|
src/about.py
CHANGED
@@ -47,6 +47,11 @@ class Tasks(Enum):
|
|
47 |
task46 = Task("taiwan", "MCC", "taiwan", category="Risk Management (RM)")
|
48 |
task48 = Task("portoseguro", "MCC", "portoseguro", category="Risk Management (RM)")
|
49 |
task50 = Task("travelinsurance", "MCC", "travelinsurance", category="Risk Management (RM)")
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
NUM_FEWSHOT = 0 # Change with your few shot
|
52 |
# ---------------------------------------------------
|
@@ -129,6 +134,12 @@ Our evaluation metrics include, but are not limited to, Accuracy, F1 Score, ROUG
|
|
129 |
- **taiwan**: MCC
|
130 |
- **portoseguro**: MCC
|
131 |
- **travelinsurance**: MCC
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
To ensure a fair and unbiased assessment of the models' true capabilities, all evaluations are conducted in zero-shot settings (0-shots). This approach eliminates any potential advantage from task-specific fine-tuning, providing a clear indication of how well the models can generalize to new tasks.
|
134 |
|
|
|
47 |
task46 = Task("taiwan", "MCC", "taiwan", category="Risk Management (RM)")
|
48 |
task48 = Task("portoseguro", "MCC", "portoseguro", category="Risk Management (RM)")
|
49 |
task50 = Task("travelinsurance", "MCC", "travelinsurance", category="Risk Management (RM)")
|
50 |
+
task51 = Task("MultiFin-ES", "F1", "MultiFin-ES", category="Spanish")
|
51 |
+
task52 = Task("EFP", "F1", "EFP", category="Spanish")
|
52 |
+
task53 = Task("EFPA", "F1", "EFPA", category="Spanish")
|
53 |
+
task54 = Task("FinanceES", "F1", "FinanceES", category="Spanish")
|
54 |
+
task55 = Task("TSA-Spanish", "F1", "TSA-Spanish", category="Spanish")
|
55 |
|
56 |
NUM_FEWSHOT = 0 # Change with your few shot
|
57 |
# ---------------------------------------------------
|
|
|
134 |
- **taiwan**: MCC
|
135 |
- **portoseguro**: MCC
|
136 |
- **travelinsurance**: MCC
|
137 |
+
- **MultiFin-ES**: F1
|
138 |
+
- **EFP**: F1
|
139 |
+
- **EFPA**: F1
|
140 |
+
- **FinanceES**: F1
|
141 |
+
- **TSA-Spanish**: F1
|
142 |
+
|
143 |
|
144 |
To ensure a fair and unbiased assessment of the models' true capabilities, all evaluations are conducted in zero-shot settings (0-shots). This approach eliminates any potential advantage from task-specific fine-tuning, providing a clear indication of how well the models can generalize to new tasks.
|
145 |
|