|
import json |
|
import os |
|
|
|
import pandas as pd |
|
from huggingface_hub import Repository |
|
from transformers import AutoConfig |
|
from collections import defaultdict |
|
|
|
from src.assets.hardcoded_evals import baseline, gpt4_values, gpt35_values |
|
from src.display_models.get_model_metadata import apply_metadata |
|
from src.display_models.read_results import get_eval_results_dicts, make_clickable_model |
|
from src.display_models.utils import AutoEvalColumn, EvalQueueColumn, has_no_nan_values |
|
|
|
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True)) |
|
|
|
|
|
def get_all_requested_models(requested_models_dir: str) -> set[str]: |
|
depth = 1 |
|
file_names = [] |
|
users_to_submission_dates = defaultdict(list) |
|
|
|
for root, _, files in os.walk(requested_models_dir): |
|
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) |
|
if current_depth == depth: |
|
for file in files: |
|
if not file.endswith(".json"): continue |
|
with open(os.path.join(root, file), "r") as f: |
|
info = json.load(f) |
|
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}") |
|
|
|
|
|
if info["model"].count("/") == 0 or "submitted_time" not in info: |
|
continue |
|
organisation, _ = info["model"].split("/") |
|
users_to_submission_dates[organisation].append(info["submitted_time"]) |
|
|
|
return set(file_names), users_to_submission_dates |
|
|
|
|
|
def load_all_info_from_hub(QUEUE_REPO: str, RESULTS_REPO: str, QUEUE_PATH: str, RESULTS_PATH: str) -> list[Repository]: |
|
eval_queue_repo = None |
|
eval_results_repo = None |
|
requested_models = None |
|
|
|
print("Pulling evaluation requests and results.") |
|
|
|
eval_queue_repo = Repository( |
|
local_dir=QUEUE_PATH, |
|
clone_from=QUEUE_REPO, |
|
repo_type="dataset", |
|
) |
|
eval_queue_repo.git_pull() |
|
|
|
eval_results_repo = Repository( |
|
local_dir=RESULTS_PATH, |
|
clone_from=RESULTS_REPO, |
|
repo_type="dataset", |
|
) |
|
eval_results_repo.git_pull() |
|
|
|
requested_models, users_to_submission_dates = get_all_requested_models("eval-queue") |
|
|
|
return eval_queue_repo, requested_models, eval_results_repo, users_to_submission_dates |
|
|
|
|
|
def get_leaderboard_df( |
|
eval_results: Repository, eval_results_private: Repository, cols: list, benchmark_cols: list |
|
) -> pd.DataFrame: |
|
if eval_results: |
|
print("Pulling evaluation results for the leaderboard.") |
|
eval_results.git_pull() |
|
if eval_results_private: |
|
print("Pulling evaluation results for the leaderboard.") |
|
eval_results_private.git_pull() |
|
|
|
all_data = get_eval_results_dicts() |
|
|
|
if not IS_PUBLIC: |
|
all_data.append(gpt4_values) |
|
all_data.append(gpt35_values) |
|
|
|
all_data.append(baseline) |
|
apply_metadata(all_data) |
|
|
|
df = pd.DataFrame.from_records(all_data) |
|
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) |
|
df = df[cols].round(decimals=2) |
|
|
|
|
|
df = df[has_no_nan_values(df, benchmark_cols)] |
|
return df |
|
|
|
|
|
def get_evaluation_queue_df( |
|
eval_queue: Repository, eval_queue_private: Repository, save_path: str, cols: list |
|
) -> list[pd.DataFrame]: |
|
if eval_queue: |
|
print("Pulling changes for the evaluation queue.") |
|
eval_queue.git_pull() |
|
if eval_queue_private: |
|
print("Pulling changes for the evaluation queue.") |
|
eval_queue_private.git_pull() |
|
|
|
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] |
|
all_evals = [] |
|
|
|
for entry in entries: |
|
if ".json" in entry: |
|
file_path = os.path.join(save_path, entry) |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) |
|
data[EvalQueueColumn.revision.name] = data.get("revision", "main") |
|
|
|
all_evals.append(data) |
|
elif ".md" not in entry: |
|
|
|
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")] |
|
for sub_entry in sub_entries: |
|
file_path = os.path.join(save_path, entry, sub_entry) |
|
with open(file_path) as fp: |
|
data = json.load(fp) |
|
|
|
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) |
|
data[EvalQueueColumn.revision.name] = data.get("revision", "main") |
|
all_evals.append(data) |
|
|
|
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] |
|
running_list = [e for e in all_evals if e["status"] == "RUNNING"] |
|
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED")] |
|
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) |
|
df_running = pd.DataFrame.from_records(running_list, columns=cols) |
|
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) |
|
return df_finished[cols], df_running[cols], df_pending[cols] |
|
|
|
|
|
def is_model_on_hub(model_name: str, revision: str) -> bool: |
|
try: |
|
AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False) |
|
return True, None |
|
|
|
except ValueError: |
|
return ( |
|
False, |
|
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", |
|
) |
|
|
|
except Exception as e: |
|
print(f"Could not get the model config from the hub.: {e}") |
|
return False, "was not found on hub!" |
|
|