|
import subprocess |
|
import gradio as gr |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import snapshot_download |
|
import os |
|
|
|
from src.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT, |
|
TITLE, |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
NUMERIC_INTERVALS, |
|
TYPES, |
|
AutoEvalColumn, |
|
ModelType, |
|
fields, |
|
WeightType, |
|
Precision |
|
) |
|
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df |
|
from src.submission.submit import add_new_eval |
|
|
|
|
|
def restart_space(): |
|
API.restart_space(repo_id=REPO_ID) |
|
|
|
try: |
|
print(EVAL_REQUESTS_PATH) |
|
snapshot_download( |
|
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
) |
|
except Exception: |
|
restart_space() |
|
try: |
|
print(EVAL_RESULTS_PATH) |
|
snapshot_download( |
|
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN |
|
) |
|
except Exception: |
|
restart_space() |
|
|
|
|
|
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) |
|
leaderboard_df = original_df.copy() |
|
|
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
|
|
|
|
|
|
def update_table( |
|
hidden_df: pd.DataFrame, |
|
columns_info: list, |
|
columns_IE: list, |
|
columns_TA: list, |
|
columns_QA: list, |
|
columns_TG: list, |
|
columns_RM: list, |
|
columns_FO: list, |
|
columns_DM: list, |
|
columns_spanish: list, |
|
columns_other: list, |
|
type_query: list, |
|
precision_query: list, |
|
size_query: list, |
|
show_deleted: bool, |
|
query: str, |
|
): |
|
|
|
selected_columns = ( |
|
columns_info + columns_IE + columns_TA + columns_QA + columns_TG + |
|
columns_RM + columns_FO + columns_DM + columns_spanish + columns_other |
|
) |
|
|
|
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted) |
|
filtered_df = filter_queries(query, filtered_df) |
|
df = select_columns(filtered_df, selected_columns) |
|
return df |
|
|
|
|
|
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: |
|
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))] |
|
|
|
|
|
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: |
|
always_here_cols = [ |
|
AutoEvalColumn.model_type_symbol.name, |
|
AutoEvalColumn.model.name, |
|
] |
|
|
|
|
|
unique_columns = set(always_here_cols + columns) |
|
|
|
|
|
filtered_df = df[[c for c in COLS if c in df.columns and c in unique_columns]] |
|
|
|
|
|
print(f"Columns included in DataFrame: {filtered_df.columns.tolist()}") |
|
|
|
return filtered_df |
|
|
|
|
|
|
|
|
|
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: |
|
final_df = [] |
|
if query != "": |
|
queries = [q.strip() for q in query.split(";")] |
|
for _q in queries: |
|
_q = _q.strip() |
|
if _q != "": |
|
temp_filtered_df = search_table(filtered_df, _q) |
|
if len(temp_filtered_df) > 0: |
|
final_df.append(temp_filtered_df) |
|
if len(final_df) > 0: |
|
filtered_df = pd.concat(final_df) |
|
filtered_df = filtered_df.drop_duplicates( |
|
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] |
|
) |
|
|
|
return filtered_df |
|
|
|
|
|
def filter_models( |
|
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool |
|
) -> pd.DataFrame: |
|
|
|
if show_deleted: |
|
filtered_df = df |
|
else: |
|
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] |
|
|
|
if "All" not in type_query: |
|
if "?" in type_query: |
|
filtered_df = filtered_df.loc[~df[AutoEvalColumn.model_type_symbol.name].isin([t for t in ModelType if t != "?"])] |
|
else: |
|
type_emoji = [t[0] for t in type_query] |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] |
|
|
|
if "All" not in precision_query: |
|
if "?" in precision_query: |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isna()] |
|
else: |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] |
|
|
|
if "All" not in size_query: |
|
if "?" in size_query: |
|
filtered_df = filtered_df.loc[df[AutoEvalColumn.params.name].isna()] |
|
else: |
|
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) |
|
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") |
|
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) |
|
filtered_df = filtered_df.loc[mask] |
|
|
|
return filtered_df |
|
|
|
|
|
|
|
def uncheck_all(): |
|
return [], [], [], [], [], [], [], [], [], [] |
|
|
|
|
|
logos_dir = "logos" |
|
logo_files = [f for f in os.listdir(logos_dir) if f.endswith(('.png', '.jpg', '.jpeg'))] |
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", |
|
show_label=False, |
|
elem_id="search-bar", |
|
) |
|
with gr.Row(): |
|
with gr.Accordion("Select columns to show"): |
|
with gr.Tab("Model Information"): |
|
shown_columns_info = gr.CheckboxGroup( |
|
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Model Information"], |
|
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Model Information"], |
|
label="Model Information", |
|
interactive=True, |
|
) |
|
with gr.Tab("Information Extraction (IE)"): |
|
shown_columns_IE = gr.CheckboxGroup( |
|
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Information Extraction (IE)"], |
|
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Information Extraction (IE)"], |
|
label="Information Extraction (IE)", |
|
interactive=True, |
|
) |
|
with gr.Tab("Textual Analysis (TA)"): |
|
shown_columns_TA = gr.CheckboxGroup( |
|
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Textual Analysis (TA)"], |
|
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Textual Analysis (TA)"], |
|
label="Textual Analysis (TA)", |
|
interactive=True, |
|
) |
|
with gr.Tab("Question Answering (QA)"): |
|
shown_columns_QA = gr.CheckboxGroup( |
|
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Question Answering (QA)"], |
|
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Question Answering (QA)"], |
|
label="Question Answering (QA)", |
|
interactive=True, |
|
) |
|
with gr.Tab("Text Generation (TG)"): |
|
shown_columns_TG = gr.CheckboxGroup( |
|
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Text Generation (TG)"], |
|
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Text Generation (TG)"], |
|
label="Text Generation (TG)", |
|
interactive=True, |
|
) |
|
with gr.Tab("Risk Management (RM)"): |
|
shown_columns_RM = gr.CheckboxGroup( |
|
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Risk Management (RM)"], |
|
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Risk Management (RM)"], |
|
label="Risk Management (RM)", |
|
interactive=True, |
|
) |
|
with gr.Tab("Forecasting (FO)"): |
|
shown_columns_FO = gr.CheckboxGroup( |
|
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Forecasting (FO)"], |
|
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Forecasting (FO)"], |
|
label="Forecasting (FO)", |
|
interactive=True, |
|
) |
|
with gr.Tab("Decision-Making (DM)"): |
|
shown_columns_DM = gr.CheckboxGroup( |
|
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Decision-Making (DM)"], |
|
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Decision-Making (DM)"], |
|
label="Decision-Making (DM)", |
|
interactive=True, |
|
) |
|
with gr.Tab("Spanish"): |
|
shown_columns_spanish = gr.CheckboxGroup( |
|
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Spanish"], |
|
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Spanish"], |
|
label="Spanish", |
|
interactive=True, |
|
) |
|
with gr.Tab("Other"): |
|
shown_columns_other = gr.CheckboxGroup( |
|
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Other"], |
|
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Other"], |
|
label="Other", |
|
interactive=True, |
|
) |
|
with gr.Row(): |
|
uncheck_all_button = gr.Button("Uncheck All") |
|
uncheck_all_button.click( |
|
uncheck_all, |
|
inputs=[], |
|
outputs=[ |
|
shown_columns_info, |
|
shown_columns_IE, |
|
shown_columns_TA, |
|
shown_columns_QA, |
|
shown_columns_TG, |
|
shown_columns_RM, |
|
shown_columns_FO, |
|
shown_columns_DM, |
|
shown_columns_spanish, |
|
shown_columns_other, |
|
|
|
], |
|
) |
|
with gr.Row(): |
|
deleted_models_visibility = gr.Checkbox( |
|
value=True, label="Show gated/private/deleted models", interactive=True |
|
) |
|
with gr.Column(min_width=320): |
|
|
|
filter_columns_type = gr.CheckboxGroup( |
|
label="Model types", |
|
choices=["All"] + [t.to_str() for t in ModelType], |
|
value=["All"], |
|
interactive=True, |
|
elem_id="filter-columns-type", |
|
) |
|
filter_columns_precision = gr.CheckboxGroup( |
|
label="Precision", |
|
choices=["All"] + [i.value.name for i in Precision], |
|
value=["All"], |
|
interactive=True, |
|
elem_id="filter-columns-precision", |
|
) |
|
filter_columns_size = gr.CheckboxGroup( |
|
label="Model sizes (in billions of parameters)", |
|
choices=["All"] + list(NUMERIC_INTERVALS.keys()) + ["?"], |
|
value=["All"], |
|
interactive=True, |
|
elem_id="filter-columns-size", |
|
) |
|
|
|
|
|
leaderboard_table = gr.Dataframe( |
|
value=leaderboard_df[ |
|
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] |
|
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.never_hidden] |
|
], |
|
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] |
|
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.never_hidden], |
|
datatype=TYPES, |
|
elem_id="leaderboard-table", |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
|
|
|
|
hidden_leaderboard_table_for_search = gr.Dataframe( |
|
value=original_df[COLS], |
|
headers=COLS, |
|
datatype=TYPES, |
|
visible=False, |
|
) |
|
search_bar.submit( |
|
update_table, |
|
inputs=[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns_info, |
|
shown_columns_IE, |
|
shown_columns_TA, |
|
shown_columns_QA, |
|
shown_columns_TG, |
|
shown_columns_RM, |
|
shown_columns_FO, |
|
shown_columns_DM, |
|
shown_columns_spanish, |
|
shown_columns_other, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
deleted_models_visibility, |
|
search_bar, |
|
], |
|
outputs=leaderboard_table, |
|
) |
|
for selector in [ |
|
shown_columns_info, |
|
shown_columns_IE, |
|
shown_columns_TA, |
|
shown_columns_QA, |
|
shown_columns_TG, |
|
shown_columns_RM, |
|
shown_columns_FO, |
|
shown_columns_DM, |
|
shown_columns_spanish, |
|
shown_columns_other, |
|
filter_columns_type, filter_columns_precision, |
|
filter_columns_size, deleted_models_visibility |
|
]: |
|
selector.change( |
|
update_table, |
|
inputs=[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns_info, |
|
shown_columns_IE, |
|
shown_columns_TA, |
|
shown_columns_QA, |
|
shown_columns_TG, |
|
shown_columns_RM, |
|
shown_columns_FO, |
|
shown_columns_DM, |
|
shown_columns_spanish, |
|
shown_columns_other, |
|
filter_columns_type, |
|
filter_columns_precision, |
|
filter_columns_size, |
|
deleted_models_visibility, |
|
search_bar, |
|
], |
|
outputs=leaderboard_table, |
|
queue=True, |
|
) |
|
|
|
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): |
|
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Column(): |
|
with gr.Accordion( |
|
f"β
Finished Evaluations ({len(finished_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
finished_eval_table = gr.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Accordion( |
|
f"π Running Evaluation Queue ({len(running_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
running_eval_table = gr.Dataframe( |
|
value=running_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
with gr.Accordion( |
|
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
pending_eval_table = gr.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Row(): |
|
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox(label="Model name") |
|
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") |
|
model_type = gr.Dropdown( |
|
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], |
|
label="Model type", |
|
multiselect=False, |
|
value=None, |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(): |
|
precision = gr.Dropdown( |
|
choices=[i.value.name for i in Precision if i != Precision.Unknown], |
|
label="Precision", |
|
multiselect=False, |
|
value="float16", |
|
interactive=True, |
|
) |
|
weight_type = gr.Dropdown( |
|
choices=[i.value.name for i in WeightType], |
|
label="Weights type", |
|
multiselect=False, |
|
value="Original", |
|
interactive=True, |
|
) |
|
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") |
|
|
|
submit_button = gr.Button("Submit Eval") |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
[ |
|
model_name_textbox, |
|
base_model_name_textbox, |
|
revision_name_textbox, |
|
precision, |
|
weight_type, |
|
model_type, |
|
], |
|
submission_result, |
|
) |
|
|
|
|
|
with gr.Row(elem_id="footer"): |
|
num_columns = min(5, len(logo_files)) |
|
for i in range(0, len(logo_files), num_columns): |
|
with gr.Row(): |
|
for logo in logo_files[i:i + num_columns]: |
|
logo_path = os.path.join(logos_dir, logo) |
|
gr.Image(logo_path, show_label=False, elem_id="logo-image", width=100, height=100) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=1800) |
|
scheduler.start() |
|
demo.queue(default_concurrency_limit=40).launch() |
|
|