mirageco's picture
Add FinTrade SR dataset
cfd9447
raw
history blame
11 kB
import glob
import json
import math
import os
from dataclasses import dataclass
import dateutil
import numpy as np
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub
task_benchmarks = {task.value.benchmark for task in Tasks}
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
"""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
print(json_filepath)
data = json.load(fp)
config = data.get("config")
# Precision
precision = Precision.from_str(config.get("model_dtype"))
# ModelType
model_type = ModelType.from_str(config.get("model_type"))
# Get model and org
org_and_model = config.get("model_name", config.get("model_args", None))
org_and_model = org_and_model.split("/", 1)
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{precision.value.name}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{precision.value.name}"
full_model = "/".join(org_and_model)
still_on_hub, _, model_config = is_model_on_hub(
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
# Extract results available in this file (some results are split in several files)
results = {}
for task in Tasks:
task = task.value
# We average all scores of a given metric (not all metrics are present in all files)
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) * 100.0
results[task.benchmark] = mean_acc
# Print missing benchmarks if any
missing_benchmarks = task_benchmarks - results.keys()
if missing_benchmarks:
print(f"(Missing results) Model {model} is missing {', '.join(missing_benchmarks)} from result files")
for benchmark in missing_benchmarks:
results[benchmark] = "missing"
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision= config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture,
model_type=model_type
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
# Initialize category averages
category_averages = {
"average_IE": [],
"average_TA": [],
"average_QA": [],
"average_TG": [],
"average_RM": [],
"average_FO": [],
"average_DM": [],
"average_Spanish": []
}
# Calculate averages for each task
for task in Tasks:
score = self.results.get(task.value.benchmark)
if score is not None:
# Append score to the appropriate category
if task.value.category == "Information Extraction (IE)":
category_averages["average_IE"].append(score)
elif task.value.category == "Textual Analysis (TA)":
category_averages["average_TA"].append(score)
elif task.value.category == "Question Answering (QA)":
category_averages["average_QA"].append(score)
elif task.value.category == "Text Generation (TG)":
category_averages["average_TG"].append(score)
elif task.value.category == "Risk Management (RM)":
if score == "missing":
category_averages["average_RM"].append(score)
else:
category_averages["average_RM"].append((score + 100) / 2)
elif task.value.category == "Forecasting (FO)":
category_averages["average_FO"].append(score)
elif task.value.category == "Decision-Making (DM)":
if task.value.benchmark == "FinTrade" and score != "missing":
category_averages["average_DM"].append((score + 3)/6)
else:
category_averages["average_DM"].append(score)
elif task.value.category == "Spanish":
category_averages["average_Spanish"].append(score)
# Calculate the mean for each category and add to data_dict
data_dict = {}
for category, scores in category_averages.items():
# Calculate the average if there are valid scores, otherwise set to 0
valid_scores = [score for score in scores if score != "missing"]
if valid_scores:
average = sum(valid_scores) / len(valid_scores)
else:
average = 0
data_dict[category] = average
# Overall average
total_scores = [v for v in self.results.values() if v != "missing"]
overall_average = sum(total_scores) / len(total_scores) if total_scores else 0
# Add other columns
data_dict.update({
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.average.name: overall_average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
})
# Add task results to the data dictionary
for task in Tasks:
data_dict[task.value.col_name] = self.results.get(task.value.benchmark)
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
print(f"Found {len(model_result_filepaths)} JSON files to process.")
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
eval_result.update_with_request_file(requests_path)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
print(f"Successfully loaded {len(results)} models.")
return results