mirageco's picture
Fix FinTrade Normalization
71249e1
raw
history blame
4.14 kB
import json
import os
import pandas as pd
import numpy as np
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_eval_results(results_path, requests_path)
all_data_json = [v.to_dict() for v in raw_data]
df = pd.DataFrame.from_records(all_data_json)
# Add category average columns with default values
category_avg_columns = {
"Average IE ⬆️": "average_IE",
"Average TA ⬆️": "average_TA",
"Average QA ⬆️": "average_QA",
"Average TG ⬆️": "average_TG",
"Average RM ⬆️": "average_RM",
"Average FO ⬆️": "average_FO",
"Average DM ⬆️": "average_DM",
"Average Spanish ⬆️": "average_Spanish"
}
for display_name, internal_name in category_avg_columns.items():
df[display_name] = df[internal_name]
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
# Apply the transformation for MCC values
mcc_tasks = ["German", "Australian", "LendingClub", "ccf", "ccfraud", "polish", "taiwan", "portoseguro", "travelinsurance"]
for task in mcc_tasks:
if task in df.columns:
df[task] = df.apply(lambda row: (row[task] + 100) / 2.0 if row[task] != "missing" else row[task], axis=1)
for index, row in df.iterrows():
if "FinTrade" in row and row["FinTrade"] != "missing":
df.loc[index, "FinTrade"] = (row["FinTrade"] + 300) / 6
# Now, select the columns that were passed to the function
df = df[cols]
# Function to round numeric values, including those in string format
def round_numeric(x):
try:
return round(float(x), 1)
except ValueError:
return x
# Apply rounding to all columns except 'T' and 'Model'
for col in df.columns:
if col not in ['T', 'Model']:
df[col] = df[col].apply(round_numeric)
# Filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
return raw_data, df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requests"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]