|
import glob |
|
import json |
|
import os |
|
import re |
|
import pickle |
|
from typing import List |
|
|
|
import huggingface_hub |
|
from huggingface_hub import HfApi |
|
from tqdm import tqdm |
|
from transformers import AutoModel, AutoConfig |
|
from accelerate import init_empty_weights |
|
|
|
from src.display_models.model_metadata_flags import DO_NOT_SUBMIT_MODELS, FLAGGED_MODELS |
|
from src.display_models.model_metadata_type import MODEL_TYPE_METADATA, ModelType, model_type_from_str |
|
from src.display_models.utils import AutoEvalColumn, model_hyperlink |
|
|
|
api = HfApi(token=os.environ.get("H4_TOKEN", None)) |
|
|
|
|
|
def get_model_infos_from_hub(leaderboard_data: List[dict]): |
|
|
|
try: |
|
with open("model_info_cache.pkl", "rb") as f: |
|
model_info_cache = pickle.load(f) |
|
except (EOFError, FileNotFoundError): |
|
model_info_cache = {} |
|
try: |
|
with open("model_size_cache.pkl", "rb") as f: |
|
model_size_cache = pickle.load(f) |
|
except (EOFError, FileNotFoundError): |
|
model_size_cache = {} |
|
|
|
for model_data in tqdm(leaderboard_data): |
|
model_name = model_data["model_name_for_query"] |
|
|
|
if model_name in model_info_cache: |
|
model_info = model_info_cache[model_name] |
|
else: |
|
try: |
|
model_info = api.model_info(model_name) |
|
model_info_cache[model_name] = model_info |
|
except huggingface_hub.utils._errors.RepositoryNotFoundError: |
|
print("Repo not found!", model_name) |
|
model_data[AutoEvalColumn.license.name] = None |
|
model_data[AutoEvalColumn.likes.name] = None |
|
if model_name not in model_size_cache: |
|
model_size_cache[model_name] = get_model_size(model_name, None) |
|
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name] |
|
|
|
model_data[AutoEvalColumn.license.name] = get_model_license(model_info) |
|
model_data[AutoEvalColumn.likes.name] = get_model_likes(model_info) |
|
if model_name not in model_size_cache: |
|
model_size_cache[model_name] = get_model_size(model_name, model_info) |
|
model_data[AutoEvalColumn.params.name] = model_size_cache[model_name] |
|
|
|
|
|
with open("model_info_cache.pkl", "wb") as f: |
|
pickle.dump(model_info_cache, f) |
|
with open("model_size_cache.pkl", "wb") as f: |
|
pickle.dump(model_size_cache, f) |
|
|
|
|
|
def get_model_license(model_info): |
|
try: |
|
return model_info.cardData["license"] |
|
except Exception: |
|
return "?" |
|
|
|
|
|
def get_model_likes(model_info): |
|
return model_info.likes |
|
|
|
|
|
size_pattern = re.compile(r"(\d\.)?\d+(b|m)") |
|
|
|
|
|
def get_model_size(model_name, model_info): |
|
|
|
try: |
|
return round(model_info.safetensors["total"] / 1e9, 3) |
|
except AttributeError: |
|
try: |
|
config = AutoConfig.from_pretrained(model_name, trust_remote_code=False) |
|
with init_empty_weights(): |
|
model = AutoModel.from_config(config, trust_remote_code=False) |
|
return round(sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e9, 3) |
|
except (EnvironmentError, ValueError): |
|
try: |
|
size_match = re.search(size_pattern, model_name.lower()) |
|
size = size_match.group(0) |
|
return round(float(size[:-1]) if size[-1] == "b" else float(size[:-1]) / 1e3, 3) |
|
except AttributeError: |
|
return 0 |
|
|
|
|
|
def get_model_type(leaderboard_data: List[dict]): |
|
for model_data in leaderboard_data: |
|
request_files = os.path.join( |
|
"eval-queue", |
|
model_data["model_name_for_query"] + "_eval_request_*" + ".json", |
|
) |
|
request_files = glob.glob(request_files) |
|
|
|
|
|
request_file = "" |
|
if len(request_files) == 1: |
|
request_file = request_files[0] |
|
elif len(request_files) > 1: |
|
request_files = sorted(request_files, reverse=True) |
|
for tmp_request_file in request_files: |
|
with open(tmp_request_file, "r") as f: |
|
req_content = json.load(f) |
|
if ( |
|
req_content["status"] == "FINISHED" |
|
and req_content["precision"] == model_data["Precision"].split(".")[-1] |
|
): |
|
request_file = tmp_request_file |
|
|
|
try: |
|
with open(request_file, "r") as f: |
|
request = json.load(f) |
|
model_type = model_type_from_str(request["model_type"]) |
|
model_data[AutoEvalColumn.model_type.name] = model_type.value.name |
|
model_data[AutoEvalColumn.model_type_symbol.name] = model_type.value.symbol |
|
except Exception: |
|
if model_data["model_name_for_query"] in MODEL_TYPE_METADATA: |
|
model_data[AutoEvalColumn.model_type.name] = MODEL_TYPE_METADATA[ |
|
model_data["model_name_for_query"] |
|
].value.name |
|
model_data[AutoEvalColumn.model_type_symbol.name] = MODEL_TYPE_METADATA[ |
|
model_data["model_name_for_query"] |
|
].value.symbol |
|
else: |
|
model_data[AutoEvalColumn.model_type.name] = ModelType.Unknown.value.name |
|
model_data[AutoEvalColumn.model_type_symbol.name] = ModelType.Unknown.value.symbol |
|
|
|
|
|
def flag_models(leaderboard_data: List[dict]): |
|
for model_data in leaderboard_data: |
|
if model_data["model_name_for_query"] in FLAGGED_MODELS: |
|
issue_num = FLAGGED_MODELS[model_data["model_name_for_query"]].split("/")[-1] |
|
issue_link = model_hyperlink( |
|
FLAGGED_MODELS[model_data["model_name_for_query"]], |
|
f"See discussion #{issue_num}", |
|
) |
|
model_data[ |
|
AutoEvalColumn.model.name |
|
] = f"{model_data[AutoEvalColumn.model.name]} has been flagged! {issue_link}" |
|
|
|
|
|
def remove_forbidden_models(leaderboard_data: List[dict]): |
|
indices_to_remove = [] |
|
for ix, model in enumerate(leaderboard_data): |
|
if model["model_name_for_query"] in DO_NOT_SUBMIT_MODELS: |
|
indices_to_remove.append(ix) |
|
|
|
for ix in reversed(indices_to_remove): |
|
leaderboard_data.pop(ix) |
|
return leaderboard_data |
|
|
|
|
|
def apply_metadata(leaderboard_data: List[dict]): |
|
leaderboard_data = remove_forbidden_models(leaderboard_data) |
|
get_model_type(leaderboard_data) |
|
get_model_infos_from_hub(leaderboard_data) |
|
flag_models(leaderboard_data) |
|
|