|
import os |
|
|
|
import pandas as pd |
|
from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item |
|
from huggingface_hub.utils._errors import HfHubHTTPError |
|
from pandas import DataFrame |
|
|
|
from src.display.utils import AutoEvalColumn, ModelType |
|
from src.envs import H4_TOKEN, PATH_TO_COLLECTION |
|
|
|
|
|
intervals = { |
|
"1B": pd.Interval(0, 1.5, closed="right"), |
|
"3B": pd.Interval(2.5, 3.5, closed="neither"), |
|
"7B": pd.Interval(6, 8, closed="neither"), |
|
"13B": pd.Interval(10, 14, closed="neither"), |
|
"30B": pd.Interval(25, 35, closed="neither"), |
|
"65B": pd.Interval(60, 70, closed="neither"), |
|
} |
|
|
|
|
|
def update_collections(df: DataFrame): |
|
"""This function updates the Open LLM Leaderboard model collection with the latest best models for |
|
each size category and type. |
|
""" |
|
collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN) |
|
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") |
|
|
|
cur_best_models = [] |
|
|
|
ix = 0 |
|
for type in ModelType: |
|
if type.value.name == "": |
|
continue |
|
for size in intervals: |
|
|
|
type_emoji = [t[0] for t in type.value.symbol] |
|
filtered_df = df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] |
|
|
|
numeric_interval = pd.IntervalIndex([intervals[size]]) |
|
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) |
|
filtered_df = filtered_df.loc[mask] |
|
|
|
best_models = list( |
|
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.dummy.name] |
|
) |
|
print(type.value.symbol, size, best_models[:10]) |
|
|
|
|
|
for model in best_models: |
|
ix += 1 |
|
cur_len_collection = len(collection.items) |
|
try: |
|
collection = add_collection_item( |
|
PATH_TO_COLLECTION, |
|
item_id=model, |
|
item_type="model", |
|
exists_ok=True, |
|
note=f"Best {type.to_str(' ')} model of around {size} on the leaderboard today!", |
|
token=H4_TOKEN, |
|
) |
|
if ( |
|
len(collection.items) > cur_len_collection |
|
): |
|
item_object_id = collection.items[-1].item_object_id |
|
update_collection_item( |
|
collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix |
|
) |
|
cur_len_collection = len(collection.items) |
|
cur_best_models.append(model) |
|
break |
|
except HfHubHTTPError: |
|
continue |
|
|
|
collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN) |
|
for item in collection.items: |
|
if item.item_id not in cur_best_models: |
|
try: |
|
delete_collection_item( |
|
collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN |
|
) |
|
except HfHubHTTPError: |
|
continue |
|
|