Spaces:
Runtime error
Runtime error
File size: 7,032 Bytes
0227006 e05ec6c 0227006 e05ec6c 0227006 e05ec6c 0227006 e05ec6c 0227006 e05ec6c 0227006 e05ec6c 0227006 e05ec6c 0227006 e05ec6c 0227006 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
from collections import defaultdict
from dataclasses import dataclass
from typing import Dict, List
import numpy as np
import pandas as pd
from datasets import load_dataset
from content import PLOT_1_TITLE, PLOT_2_TITLE, PLOT_3_TITLE, PLOT_4_TITLE
from utils import make_clickable_model
from visualizations import (
get_bootstrap_result,
switch_model_a_b,
visualize_battle_count,
visualize_bootstrap_scores,
visualize_pairwise_win_fraction,
visualize_rating_count,
)
KOALA_LINK = "https://huggingface.co/TheBloke/koala-13B-HF"
VICUNA_LINK = "https://huggingface.co/HuggingFaceH4/stable-vicuna-13b-2904"
OASST_LINK = "https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
DOLLY_LINK = "https://huggingface.co/databricks/dolly-v2-12b"
MODEL_PAGE = "https://huggingface.co/models"
def make_clickable_model_elo(model_name):
link = ""
if model_name == "dolly-12b":
link = DOLLY_LINK
elif model_name == "vicuna-13b":
link = VICUNA_LINK
elif model_name == "koala-13b":
link = KOALA_LINK
elif model_name == "oasst-12b":
link = OASST_LINK
else:
link = MODEL_PAGE
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
@dataclass
class EloEvalResult:
model: str
gpt_4_all: int
human_all: int
human_instruct: int
human_code_instruct: int
tie_allowed: bool
def to_dict(self):
base_model = f"{self.model}"
data_dict = {}
data_dict["Model"] = make_clickable_model_elo(base_model)
data_dict["GPT-4 (all)"] = self.gpt_4_all
data_dict["Human (all)"] = self.human_all
data_dict["Human (instruct)"] = self.human_instruct
data_dict["Human (code-instruct)"] = self.human_code_instruct
return data_dict
def create_eval_df(df, tie_allowed):
responses = []
for _, row in df.iterrows():
if row["status"] == "canceled":
continue
rating = row["response"]["annotations"]["Preference"]
if rating == "NaN":
continue
scores = row["response"]["responses"]
if any(s["Preference"] == "" for s in scores):
continue
response = {
"id": row["task_id"],
"prompt": row["params"]["templateVariables"]["prompt"],
"model_a": row["params"]["templateVariables"]["modela"],
"model_b": row["params"]["templateVariables"]["modelb"],
"response_a": row["params"]["templateVariables"]["response1"],
"response_b": row["params"]["templateVariables"]["response2"],
"rating": int(rating),
"ratings": [np.array([s["Preference"] for s in scores], dtype=np.int32)],
}
if tie_allowed:
response["win"] = (
"model_a"
if response["rating"] < 4
else "model_b"
if response["rating"] > 5
else "tie"
)
else:
response["win"] = "model_a" if response["rating"] < 5 else "model_b"
responses.append(response)
return pd.DataFrame(responses)
def create_eval_df_for_gpt(df, tie_allowed):
responses = []
for _, row in df.iterrows():
response = {
"id": row["review_id"],
"prompt": row["question"],
"model_a": row["model1"],
"model_b": row["model2"],
"response_a": row["answer1"],
"response_b": row["answer2"],
"rating": row["score"][0],
}
if tie_allowed:
response["win"] = (
"model_a"
if response["rating"] < 4
else "model_b"
if response["rating"] > 5
else "tie"
)
else:
response["win"] = "model_a" if response["rating"] < 5 else "model_b"
responses.append(response)
return pd.DataFrame(responses)
# Compute the Elo rating for each model
def compute_elo(df, k=32, scale=400, base=10, initial_rating=1000):
rating = defaultdict(lambda: initial_rating)
for _, model_a, model_b, win in df[["model_a", "model_b", "win"]].itertuples():
ra = rating[model_a]
rb = rating[model_b]
ea = 1 / (1 + base ** ((rb - ra) / scale))
eb = 1 / (1 + base ** ((ra - rb) / scale))
if win == "model_a":
sa = 1
elif win == "model_b":
sa = 0
elif win == "tie" or win == "tie (bothbad)":
sa = 0.5
else:
raise Exception(f"unexpected vote {win}")
rating[model_a] += k * (sa - ea)
rating[model_b] += k * (1 - sa - eb)
return rating
def convert_rating_from_float_to_int(df):
return {model: int(rating) for model, rating in compute_elo(df).items()}
def get_elo_results(df_instruct, df_code_instruct, tie_allowed):
df_all = pd.concat([df_instruct, df_code_instruct])
df_gpt_4 = load_dataset(
"gpt_4_evals/data/",
split="train",
revision="e007baaf6e505731c08a0bc1a833a1f8f8cb8846",
).to_pandas()
dfs = [df_instruct, df_code_instruct, df_all]
elo_ratings = [
convert_rating_from_float_to_int(create_eval_df(df, tie_allowed=tie_allowed))
for df in dfs
]
gpt_4_elo_ratings = convert_rating_from_float_to_int(
create_eval_df_for_gpt(df_gpt_4, tie_allowed=tie_allowed)
)
elo_ratings.append(gpt_4_elo_ratings)
results = [
EloEvalResult(
model=model_name,
gpt_4_all=elo_ratings[3][model_name],
human_all=elo_ratings[2][model_name],
human_instruct=elo_ratings[0][model_name],
human_code_instruct=elo_ratings[1][model_name],
tie_allowed=tie_allowed,
)
for model_name in elo_ratings[0].keys()
]
return results
def get_elo_results_dicts(df_instruct, df_code_instruct, tie_allowed) -> List[Dict]:
eval_results = get_elo_results(df_instruct, df_code_instruct, tie_allowed)
return [r.to_dict() for r in eval_results]
def get_elo_plots(df_instruct, df_code_instruct, tie_allowed):
df_instruct = create_eval_df(df_instruct, tie_allowed=tie_allowed)
df_code_instruct = create_eval_df(df_code_instruct, tie_allowed=tie_allowed)
df_all = pd.concat([df_instruct, df_code_instruct])
game = df_all[["model_a", "model_b", "win"]]
game_switch = switch_model_a_b(game)
plot_1 = visualize_pairwise_win_fraction(game_switch, PLOT_1_TITLE)
plot_2 = visualize_battle_count(game_switch, PLOT_2_TITLE)
BOOTSTRAP_ROUNDS = 1000
if "bootstrap_elo_lu" not in globals():
bootstrap_elo_lu = get_bootstrap_result(
game_switch, compute_elo, BOOTSTRAP_ROUNDS
)
plot_3 = visualize_bootstrap_scores(bootstrap_elo_lu, PLOT_3_TITLE)
plot_4 = visualize_rating_count(game, PLOT_4_TITLE)
return plot_1, plot_2, plot_3, plot_4
|