sapiens-demo / app.py
joselobenitezg's picture
update sapiens link
28eb7cb verified
raw
history blame
6.14 kB
import os
import gradio as gr
import numpy as np
from PIL import Image
import cv2
import spaces
from inference.seg import process_image_or_video as process_seg
from inference.pose import process_image_or_video as process_pose
from inference.depth import process_image_or_video as process_depth
from inference.normal import process_image_or_video as process_normal
from config import SAPIENS_LITE_MODELS_PATH
def update_model_choices(task):
model_choices = list(SAPIENS_LITE_MODELS_PATH[task.lower()].keys())
return gr.Dropdown(choices=model_choices, value=model_choices[0] if model_choices else None)
@spaces.GPU(duration=75)
def process_image(input_image, task, version):
if isinstance(input_image, np.ndarray):
input_image = Image.fromarray(input_image)
if task.lower() == 'seg':
result = process_seg(input_image, task=task.lower(), version=version)
elif task.lower() == 'pose':
result = process_pose(input_image, task=task.lower(), version=version)
elif task.lower() == 'depth':
result = process_depth(input_image, task=task.lower(), version=version)
elif task.lower() == 'normal':
result = process_normal(input_image, task=task.lower(), version=version)
else:
result = None
print(f"Tarea no soportada: {task}")
return result
@spaces.GPU(duration=75)
def process_video(input_video, task, version):
cap = cv2.VideoCapture(input_video)
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_video = cv2.VideoWriter('output_video.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if task.lower() == 'seg':
processed_frame = process_seg(frame_rgb, task=task.lower(), version=version)
elif task.lower() == 'pose':
processed_frame = process_pose(frame_rgb, task=task.lower(), version=version)
elif task.lower() == 'depth':
processed_frame = process_depth(frame_rgb, task=task.lower(), version=version)
elif task.lower() == 'normal':
processed_frame = process_normal(frame_rgb, task=task.lower(), version=version)
else:
processed_frame = None
print(f"Tarea no soportada: {task}")
break
if processed_frame is not None:
processed_frame_bgr = cv2.cvtColor(np.array(processed_frame), cv2.COLOR_RGB2BGR)
output_video.write(processed_frame_bgr)
cap.release()
output_video.release()
return 'output_video.mp4'
with gr.Blocks() as demo:
gr.Markdown("""
<div style="text-align: center; font-size: 35px; font-weight: bold; margin-bottom: 20px;">
Sapiens Huggingface Space🤗
</div>
<div style="text-align: center; font-size: 25px; font-weight: bold; margin-bottom: 20px;">
Foundation for Human Vision Models
</div>
<div style="text-align: center;">
<a href="https://huggingface.co/facebook/sapiens">🤗 Sapiens Models</a> |
<a href="https://github.com/facebookresearch/sapiens/">🌐 Github</a> |
<a href="https://www.arxiv.org/abs/2408.12569">📜 arxiv </a> |
<a href="https://joselo.ai">🔗Personal Blog </a>
</div>
<div style="text-align: center; font-size: 15px; font-weight: bold; margin-bottom: 20px;">
Sapiens, a family of models for four fundamental human-centric vision tasks - 2D pose estimation, body-part segmentation, depth estimation, and surface normal prediction.
</div>
""")
with gr.Tabs():
with gr.TabItem('Image'):
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
select_task_image = gr.Radio(
["seg", "pose", "depth", "normal"],
label="Task",
info="Choose the task to perform",
value="seg"
)
model_name_image = gr.Dropdown(
label="Model Version",
choices=list(SAPIENS_LITE_MODELS_PATH["seg"].keys()),
value="sapiens_0.3b",
)
with gr.Column():
result_image = gr.Image(label="Result")
run_button_image = gr.Button("Run")
with gr.TabItem('Video'):
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video")
select_task_video = gr.Radio(
["seg", "pose", "depth", "normal"],
label="Task",
info="Choose the task to perform",
value="seg"
)
model_name_video = gr.Dropdown(
label="Model Version",
choices=list(SAPIENS_LITE_MODELS_PATH["seg"].keys()),
value="sapiens_0.3b",
)
with gr.Column():
result_video = gr.Video(label="Result")
run_button_video = gr.Button("Run")
select_task_image.change(fn=update_model_choices, inputs=select_task_image, outputs=model_name_image)
select_task_video.change(fn=update_model_choices, inputs=select_task_video, outputs=model_name_video)
run_button_image.click(
fn=process_image,
inputs=[input_image, select_task_image, model_name_image],
outputs=[result_image],
)
run_button_video.click(
fn=process_video,
inputs=[input_video, select_task_video, model_name_video],
outputs=[result_video],
)
if __name__ == "__main__":
demo.launch(share=False)