Spaces:
Running
Running
''' | |
Original from https://github.com/CSAILVision/GANDissect | |
Modified by Erik Härkönen, 29.11.2019 | |
''' | |
import numbers | |
import torch | |
from netdissect.autoeval import autoimport_eval | |
from netdissect.progress import print_progress | |
from netdissect.nethook import InstrumentedModel | |
from netdissect.easydict import EasyDict | |
def create_instrumented_model(args, **kwargs): | |
''' | |
Creates an instrumented model out of a namespace of arguments that | |
correspond to ArgumentParser command-line args: | |
model: a string to evaluate as a constructor for the model. | |
pthfile: (optional) filename of .pth file for the model. | |
layers: a list of layers to instrument, defaulted if not provided. | |
edit: True to instrument the layers for editing. | |
gen: True for a generator model. One-pixel input assumed. | |
imgsize: For non-generator models, (y, x) dimensions for RGB input. | |
cuda: True to use CUDA. | |
The constructed model will be decorated with the following attributes: | |
input_shape: (usually 4d) tensor shape for single-image input. | |
output_shape: 4d tensor shape for output. | |
feature_shape: map of layer names to 4d tensor shape for featuremaps. | |
retained: map of layernames to tensors, filled after every evaluation. | |
ablation: if editing, map of layernames to [0..1] alpha values to fill. | |
replacement: if editing, map of layernames to values to fill. | |
When editing, the feature value x will be replaced by: | |
`x = (replacement * ablation) + (x * (1 - ablation))` | |
''' | |
args = EasyDict(vars(args), **kwargs) | |
# Construct the network | |
if args.model is None: | |
print_progress('No model specified') | |
return None | |
if isinstance(args.model, torch.nn.Module): | |
model = args.model | |
else: | |
model = autoimport_eval(args.model) | |
# Unwrap any DataParallel-wrapped model | |
if isinstance(model, torch.nn.DataParallel): | |
model = next(model.children()) | |
# Load its state dict | |
meta = {} | |
if getattr(args, 'pthfile', None) is not None: | |
data = torch.load(args.pthfile) | |
if 'state_dict' in data: | |
meta = {} | |
for key in data: | |
if isinstance(data[key], numbers.Number): | |
meta[key] = data[key] | |
data = data['state_dict'] | |
submodule = getattr(args, 'submodule', None) | |
if submodule is not None and len(submodule): | |
remove_prefix = submodule + '.' | |
data = { k[len(remove_prefix):]: v for k, v in data.items() | |
if k.startswith(remove_prefix)} | |
if not len(data): | |
print_progress('No submodule %s found in %s' % | |
(submodule, args.pthfile)) | |
return None | |
model.load_state_dict(data, strict=not getattr(args, 'unstrict', False)) | |
# Decide which layers to instrument. | |
if getattr(args, 'layer', None) is not None: | |
args.layers = [args.layer] | |
if getattr(args, 'layers', None) is None: | |
# Skip wrappers with only one named model | |
container = model | |
prefix = '' | |
while len(list(container.named_children())) == 1: | |
name, container = next(container.named_children()) | |
prefix += name + '.' | |
# Default to all nontrivial top-level layers except last. | |
args.layers = [prefix + name | |
for name, module in container.named_children() | |
if type(module).__module__ not in [ | |
# Skip ReLU and other activations. | |
'torch.nn.modules.activation', | |
# Skip pooling layers. | |
'torch.nn.modules.pooling'] | |
][:-1] | |
print_progress('Defaulting to layers: %s' % ' '.join(args.layers)) | |
# Now wrap the model for instrumentation. | |
model = InstrumentedModel(model) | |
model.meta = meta | |
# Instrument the layers. | |
model.retain_layers(args.layers) | |
model.eval() | |
if args.cuda: | |
model.cuda() | |
# Annotate input, output, and feature shapes | |
annotate_model_shapes(model, | |
gen=getattr(args, 'gen', False), | |
imgsize=getattr(args, 'imgsize', None), | |
latent_shape=getattr(args, 'latent_shape', None)) | |
return model | |
def annotate_model_shapes(model, gen=False, imgsize=None, latent_shape=None): | |
assert (imgsize is not None) or gen | |
# Figure the input shape. | |
if gen: | |
if latent_shape is None: | |
# We can guess a generator's input shape by looking at the model. | |
# Examine first conv in model to determine input feature size. | |
first_layer = [c for c in model.modules() | |
if isinstance(c, (torch.nn.Conv2d, torch.nn.ConvTranspose2d, | |
torch.nn.Linear))][0] | |
# 4d input if convolutional, 2d input if first layer is linear. | |
if isinstance(first_layer, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)): | |
input_shape = (1, first_layer.in_channels, 1, 1) | |
else: | |
input_shape = (1, first_layer.in_features) | |
else: | |
# Specify input shape manually | |
input_shape = latent_shape | |
else: | |
# For a classifier, the input image shape is given as an argument. | |
input_shape = (1, 3) + tuple(imgsize) | |
# Run the model once to observe feature shapes. | |
device = next(model.parameters()).device | |
dry_run = torch.zeros(input_shape).to(device) | |
with torch.no_grad(): | |
output = model(dry_run) | |
# Annotate shapes. | |
model.input_shape = input_shape | |
model.feature_shape = { layer: feature.shape | |
for layer, feature in model.retained_features().items() } | |
model.output_shape = output.shape | |
return model | |