File size: 2,644 Bytes
2538077 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#|default_exp app"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Dogs v Cats"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#|export\n",
"from fastai.vision.all import *\n",
"import gradio as gr\n",
"\n",
"def is_cat(x): return x[0].isupper()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"im = PILImage.create('dog.jpg')\n",
"im.thumbnail((192,192))\n",
"im"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#|export\n",
"import pathlib\n",
"temp = pathlib.PosixPath\n",
"pathlib.PosixPath = pathlib.WindowsPath\n",
"learn = load_learner('model.pkl')\n",
"pathlib.PosixPath = temp"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"learn.predict(im)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#|export\n",
"categories = ('Dog', 'Cat')\n",
"\n",
"def classify_image(img):\n",
" pred,idx,probs = learn.predict(img)\n",
" return dict(zip(categories, map(float, probs)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"classify_image(im)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#|export\n",
"image = gr.inputs.Image(shape=(192,192))\n",
"label = gr.outputs.Label()\n",
"examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg']\n",
"\n",
"intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
"intf.launch(inline=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "793ac646cb1bdfbbf9b49ec8438cf418377ae0464a060bb58045a63a1c103122"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|