|
import gradio as gr |
|
|
|
|
|
|
|
from PIL import Image |
|
import numpy as np |
|
from io import BytesIO |
|
import os |
|
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') |
|
|
|
|
|
from diffusers import StableDiffusionImg2ImgPipeline |
|
|
|
print("hello sylvain") |
|
|
|
YOUR_TOKEN=MY_SECRET_TOKEN |
|
|
|
device="cpu" |
|
|
|
|
|
|
|
|
|
img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN) |
|
img_pipe.to(device) |
|
|
|
source_img = gr.Image(source="upload", type="filepath", label="init_img | 512*512 px") |
|
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto") |
|
|
|
def resize(height,img): |
|
baseheight = height |
|
img = Image.open(img) |
|
hpercent = (baseheight/float(img.size[1])) |
|
wsize = int((float(img.size[0])*float(hpercent))) |
|
img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS) |
|
return img |
|
|
|
|
|
def infer(prompt, source_img): |
|
|
|
source_image = source_img.resize((512,512), Image.Resampling.LANCZOS) |
|
source_image.save('source.png') |
|
images_list = img_pipe([prompt] * 2, init_image=source_image, strength=0.75) |
|
images = [] |
|
safe_image = Image.open(r"unsafe.png") |
|
for i, image in enumerate(images_list["sample"]): |
|
if(images_list["nsfw_content_detected"][i]): |
|
images.append(safe_image) |
|
else: |
|
images.append(image) |
|
return images |
|
|
|
print("Great sylvain ! Everything is working fine !") |
|
|
|
title="Img2Img Stable Diffusion CPU" |
|
description="Img2Img Stable Diffusion example using CPU and HF token. <br />Warning: Slow process... ~5/10 min inference time. <b>NSFW filter enabled.</b>" |
|
|
|
gr.Interface(fn=infer, inputs=["text", source_img], outputs=gallery,title=title,description=description).launch(enable_queue=True) |