Spaces:
Build error
Build error
import os | |
os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt") | |
os.system("pip install imageio") | |
os.system("pip install albumentations==0.5.2") | |
os.system("pip install opencv-python") | |
os.system("pip install ffmpeg-python") | |
os.system("pip install moviepy") | |
import cv2 | |
import paddlehub as hub | |
import gradio as gr | |
import torch | |
from PIL import Image, ImageOps | |
import numpy as np | |
import imageio | |
from moviepy.editor import * | |
os.mkdir("data") | |
os.rename("best.ckpt", "models/best.ckpt") | |
os.mkdir("dataout") | |
def get_frames(video_in): | |
frames = [] | |
#resize the video | |
clip = VideoFileClip(video_in) | |
#check fps | |
if clip.fps > 30: | |
print("vide rate is over 30, resetting to 30") | |
clip_resized = clip.resize(height=256) | |
clip_resized.write_videofile("video_resized.mp4", fps=30) | |
else: | |
print("video rate is OK") | |
clip_resized = clip.resize(height=256) | |
clip_resized.write_videofile("video_resized.mp4", fps=clip.fps) | |
print("video resized to 512 height") | |
# Opens the Video file with CV2 | |
cap= cv2.VideoCapture("video_resized.mp4") | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
print("video fps: " + str(fps)) | |
i=0 | |
while(cap.isOpened()): | |
ret, frame = cap.read() | |
if ret == False: | |
break | |
cv2.imwrite('kang'+str(i)+'.jpg',frame) | |
frames.append('kang'+str(i)+'.jpg') | |
i+=1 | |
cap.release() | |
cv2.destroyAllWindows() | |
print("broke the video into frames") | |
return frames, fps | |
def create_video(frames, fps, type): | |
print("building video result") | |
clip = ImageSequenceClip(frames, fps=fps) | |
clip.write_videofile(type + "_result.mp4", fps=fps) | |
return type + "_result.mp4" | |
def magic_lama(img): | |
i = img | |
img = Image.open(img) | |
mask = Image.open("./masks/modelscope-mask.png") | |
inverted_mask = ImageOps.invert(mask) | |
imageio.imwrite(f"./data/data.png", img) | |
imageio.imwrite(f"./data/data_mask.png", inverted_mask) | |
os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu') | |
return f"./dataout/data_mask.png" | |
def infer(video_in): | |
# 1. break video into frames and get FPS | |
break_vid = get_frames(video_in) | |
frames_list= break_vid[0] | |
fps = break_vid[1] | |
#n_frame = int(trim_value*fps) | |
n_frame = len(frames_list) | |
if n_frame >= len(frames_list): | |
print("video is shorter than the cut value") | |
n_frame = len(frames_list) | |
# 2. prepare frames result arrays | |
result_frames = [] | |
print("set stop frames to: " + str(n_frame)) | |
for i in frames_list[0:int(n_frame)]: | |
lama_frame = magic_lama(i) | |
lama_frame = Image.open(lama_frame) | |
imageio.imwrite(f"cleaned_frame_{i}", lama_frame) | |
result_frames.append(f"cleaned_frame_{i}") | |
print("frame " + i + "/" + str(n_frame) + ": done;") | |
final_vid = create_video(result_frames, fps, "cleaned") | |
files = [final_vid] | |
return final_vid, files | |
inputs = [gr.Video(label="Input", source="upload", type="filepath")] | |
outputs = [gr.Video(label="output"), | |
gr.Files(label="Download Video")] | |
title = "LaMa Video Watermark Remover" | |
description = "LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. <br />This demo in meant to be used as a watermark remover on Modelscope generated videos. <br />Simply upload your modelscope video and hit Submit" | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>" | |
gr.Interface(infer, inputs, outputs, title=title, | |
description=description, article=article).launch() | |