File size: 13,688 Bytes
24eb05d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import math
import random
import hashlib
import logging
from enum import Enum

import cv2
import numpy as np

from saicinpainting.evaluation.masks.mask import SegmentationMask
from saicinpainting.utils import LinearRamp

LOGGER = logging.getLogger(__name__)


class DrawMethod(Enum):
    LINE = 'line'
    CIRCLE = 'circle'
    SQUARE = 'square'


def make_random_irregular_mask(shape, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10,
                               draw_method=DrawMethod.LINE):
    draw_method = DrawMethod(draw_method)

    height, width = shape
    mask = np.zeros((height, width), np.float32)
    times = np.random.randint(min_times, max_times + 1)
    for i in range(times):
        start_x = np.random.randint(width)
        start_y = np.random.randint(height)
        for j in range(1 + np.random.randint(5)):
            angle = 0.01 + np.random.randint(max_angle)
            if i % 2 == 0:
                angle = 2 * 3.1415926 - angle
            length = 10 + np.random.randint(max_len)
            brush_w = 5 + np.random.randint(max_width)
            end_x = np.clip((start_x + length * np.sin(angle)).astype(np.int32), 0, width)
            end_y = np.clip((start_y + length * np.cos(angle)).astype(np.int32), 0, height)
            if draw_method == DrawMethod.LINE:
                cv2.line(mask, (start_x, start_y), (end_x, end_y), 1.0, brush_w)
            elif draw_method == DrawMethod.CIRCLE:
                cv2.circle(mask, (start_x, start_y), radius=brush_w, color=1., thickness=-1)
            elif draw_method == DrawMethod.SQUARE:
                radius = brush_w // 2
                mask[start_y - radius:start_y + radius, start_x - radius:start_x + radius] = 1
            start_x, start_y = end_x, end_y
    return mask[None, ...]


class RandomIrregularMaskGenerator:
    def __init__(self, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10, ramp_kwargs=None,
                 draw_method=DrawMethod.LINE):
        self.max_angle = max_angle
        self.max_len = max_len
        self.max_width = max_width
        self.min_times = min_times
        self.max_times = max_times
        self.draw_method = draw_method
        self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None

    def __call__(self, img, iter_i=None, raw_image=None):
        coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1
        cur_max_len = int(max(1, self.max_len * coef))
        cur_max_width = int(max(1, self.max_width * coef))
        cur_max_times = int(self.min_times + 1 + (self.max_times - self.min_times) * coef)
        return make_random_irregular_mask(img.shape[1:], max_angle=self.max_angle, max_len=cur_max_len,
                                          max_width=cur_max_width, min_times=self.min_times, max_times=cur_max_times,
                                          draw_method=self.draw_method)


def make_random_rectangle_mask(shape, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3):
    height, width = shape
    mask = np.zeros((height, width), np.float32)
    bbox_max_size = min(bbox_max_size, height - margin * 2, width - margin * 2)
    times = np.random.randint(min_times, max_times + 1)
    for i in range(times):
        box_width = np.random.randint(bbox_min_size, bbox_max_size)
        box_height = np.random.randint(bbox_min_size, bbox_max_size)
        start_x = np.random.randint(margin, width - margin - box_width + 1)
        start_y = np.random.randint(margin, height - margin - box_height + 1)
        mask[start_y:start_y + box_height, start_x:start_x + box_width] = 1
    return mask[None, ...]


class RandomRectangleMaskGenerator:
    def __init__(self, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3, ramp_kwargs=None):
        self.margin = margin
        self.bbox_min_size = bbox_min_size
        self.bbox_max_size = bbox_max_size
        self.min_times = min_times
        self.max_times = max_times
        self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None

    def __call__(self, img, iter_i=None, raw_image=None):
        coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1
        cur_bbox_max_size = int(self.bbox_min_size + 1 + (self.bbox_max_size - self.bbox_min_size) * coef)
        cur_max_times = int(self.min_times + (self.max_times - self.min_times) * coef)
        return make_random_rectangle_mask(img.shape[1:], margin=self.margin, bbox_min_size=self.bbox_min_size,
                                          bbox_max_size=cur_bbox_max_size, min_times=self.min_times,
                                          max_times=cur_max_times)


class RandomSegmentationMaskGenerator:
    def __init__(self, **kwargs):
        self.impl = None  # will be instantiated in first call (effectively in subprocess)
        self.kwargs = kwargs

    def __call__(self, img, iter_i=None, raw_image=None):
        if self.impl is None:
            self.impl = SegmentationMask(**self.kwargs)

        masks = self.impl.get_masks(np.transpose(img, (1, 2, 0)))
        masks = [m for m in masks if len(np.unique(m)) > 1]
        return np.random.choice(masks)


def make_random_superres_mask(shape, min_step=2, max_step=4, min_width=1, max_width=3):
    height, width = shape
    mask = np.zeros((height, width), np.float32)
    step_x = np.random.randint(min_step, max_step + 1)
    width_x = np.random.randint(min_width, min(step_x, max_width + 1))
    offset_x = np.random.randint(0, step_x)

    step_y = np.random.randint(min_step, max_step + 1)
    width_y = np.random.randint(min_width, min(step_y, max_width + 1))
    offset_y = np.random.randint(0, step_y)

    for dy in range(width_y):
        mask[offset_y + dy::step_y] = 1
    for dx in range(width_x):
        mask[:, offset_x + dx::step_x] = 1
    return mask[None, ...]


class RandomSuperresMaskGenerator:
    def __init__(self, **kwargs):
        self.kwargs = kwargs

    def __call__(self, img, iter_i=None):
        return make_random_superres_mask(img.shape[1:], **self.kwargs)


class DumbAreaMaskGenerator:
    min_ratio = 0.1
    max_ratio = 0.35
    default_ratio = 0.225

    def __init__(self, is_training):
        #Parameters:
        #    is_training(bool): If true - random rectangular mask, if false - central square mask
        self.is_training = is_training

    def _random_vector(self, dimension):
        if self.is_training:
            lower_limit = math.sqrt(self.min_ratio)
            upper_limit = math.sqrt(self.max_ratio)
            mask_side = round((random.random() * (upper_limit - lower_limit) + lower_limit) * dimension)
            u = random.randint(0, dimension-mask_side-1)
            v = u+mask_side 
        else:
            margin = (math.sqrt(self.default_ratio) / 2) * dimension
            u = round(dimension/2 - margin)
            v = round(dimension/2 + margin)
        return u, v

    def __call__(self, img, iter_i=None, raw_image=None):
        c, height, width = img.shape
        mask = np.zeros((height, width), np.float32)
        x1, x2 = self._random_vector(width)
        y1, y2 = self._random_vector(height)
        mask[x1:x2, y1:y2] = 1
        return mask[None, ...]


class OutpaintingMaskGenerator:
    def __init__(self, min_padding_percent:float=0.04, max_padding_percent:int=0.25, left_padding_prob:float=0.5, top_padding_prob:float=0.5, 
                 right_padding_prob:float=0.5, bottom_padding_prob:float=0.5, is_fixed_randomness:bool=False):
        """
        is_fixed_randomness - get identical paddings for the same image if args are the same
        """
        self.min_padding_percent = min_padding_percent
        self.max_padding_percent = max_padding_percent
        self.probs = [left_padding_prob, top_padding_prob, right_padding_prob, bottom_padding_prob]
        self.is_fixed_randomness = is_fixed_randomness

        assert self.min_padding_percent <= self.max_padding_percent
        assert self.max_padding_percent > 0
        assert len([x for x in [self.min_padding_percent, self.max_padding_percent] if (x>=0 and x<=1)]) == 2, f"Padding percentage should be in [0,1]"
        assert sum(self.probs) > 0, f"At least one of the padding probs should be greater than 0 - {self.probs}"
        assert len([x for x in self.probs if (x >= 0) and (x <= 1)]) == 4, f"At least one of padding probs is not in [0,1] - {self.probs}"
        if len([x for x in self.probs if x > 0]) == 1:
            LOGGER.warning(f"Only one padding prob is greater than zero - {self.probs}. That means that the outpainting masks will be always on the same side")

    def apply_padding(self, mask, coord):
        mask[int(coord[0][0]*self.img_h):int(coord[1][0]*self.img_h),   
             int(coord[0][1]*self.img_w):int(coord[1][1]*self.img_w)] = 1
        return mask

    def get_padding(self, size):
        n1 = int(self.min_padding_percent*size)
        n2 = int(self.max_padding_percent*size)
        return self.rnd.randint(n1, n2) / size

    @staticmethod
    def _img2rs(img):
        arr = np.ascontiguousarray(img.astype(np.uint8))
        str_hash = hashlib.sha1(arr).hexdigest()
        res = hash(str_hash)%(2**32)
        return res

    def __call__(self, img, iter_i=None, raw_image=None):
        c, self.img_h, self.img_w = img.shape
        mask = np.zeros((self.img_h, self.img_w), np.float32)
        at_least_one_mask_applied = False

        if self.is_fixed_randomness:
            assert raw_image is not None, f"Cant calculate hash on raw_image=None"
            rs = self._img2rs(raw_image)
            self.rnd = np.random.RandomState(rs)
        else:
            self.rnd = np.random

        coords = [[
                   (0,0), 
                   (1,self.get_padding(size=self.img_h))
                  ],
                  [
                    (0,0),
                    (self.get_padding(size=self.img_w),1)
                  ],
                  [
                    (0,1-self.get_padding(size=self.img_h)),
                    (1,1)
                  ],    
                  [
                    (1-self.get_padding(size=self.img_w),0),
                    (1,1)
                  ]]

        for pp, coord in zip(self.probs, coords):
            if self.rnd.random() < pp:
                at_least_one_mask_applied = True
                mask = self.apply_padding(mask=mask, coord=coord)

        if not at_least_one_mask_applied:
            idx = self.rnd.choice(range(len(coords)), p=np.array(self.probs)/sum(self.probs))
            mask = self.apply_padding(mask=mask, coord=coords[idx])
        return mask[None, ...]


class MixedMaskGenerator:
    def __init__(self, irregular_proba=1/3, irregular_kwargs=None,
                 box_proba=1/3, box_kwargs=None,
                 segm_proba=1/3, segm_kwargs=None,
                 squares_proba=0, squares_kwargs=None,
                 superres_proba=0, superres_kwargs=None,
                 outpainting_proba=0, outpainting_kwargs=None,
                 invert_proba=0):
        self.probas = []
        self.gens = []

        if irregular_proba > 0:
            self.probas.append(irregular_proba)
            if irregular_kwargs is None:
                irregular_kwargs = {}
            else:
                irregular_kwargs = dict(irregular_kwargs)
            irregular_kwargs['draw_method'] = DrawMethod.LINE
            self.gens.append(RandomIrregularMaskGenerator(**irregular_kwargs))

        if box_proba > 0:
            self.probas.append(box_proba)
            if box_kwargs is None:
                box_kwargs = {}
            self.gens.append(RandomRectangleMaskGenerator(**box_kwargs))

        if segm_proba > 0:
            self.probas.append(segm_proba)
            if segm_kwargs is None:
                segm_kwargs = {}
            self.gens.append(RandomSegmentationMaskGenerator(**segm_kwargs))

        if squares_proba > 0:
            self.probas.append(squares_proba)
            if squares_kwargs is None:
                squares_kwargs = {}
            else:
                squares_kwargs = dict(squares_kwargs)
            squares_kwargs['draw_method'] = DrawMethod.SQUARE
            self.gens.append(RandomIrregularMaskGenerator(**squares_kwargs))

        if superres_proba > 0:
            self.probas.append(superres_proba)
            if superres_kwargs is None:
                superres_kwargs = {}
            self.gens.append(RandomSuperresMaskGenerator(**superres_kwargs))

        if outpainting_proba > 0:
            self.probas.append(outpainting_proba)
            if outpainting_kwargs is None:
                outpainting_kwargs = {}
            self.gens.append(OutpaintingMaskGenerator(**outpainting_kwargs))

        self.probas = np.array(self.probas, dtype='float32')
        self.probas /= self.probas.sum()
        self.invert_proba = invert_proba

    def __call__(self, img, iter_i=None, raw_image=None):
        kind = np.random.choice(len(self.probas), p=self.probas)
        gen = self.gens[kind]
        result = gen(img, iter_i=iter_i, raw_image=raw_image)
        if self.invert_proba > 0 and random.random() < self.invert_proba:
            result = 1 - result
        return result


def get_mask_generator(kind, kwargs):
    if kind is None:
        kind = "mixed"
    if kwargs is None:
        kwargs = {}

    if kind == "mixed":
        cl = MixedMaskGenerator
    elif kind == "outpainting":
        cl = OutpaintingMaskGenerator
    elif kind == "dumb":
        cl = DumbAreaMaskGenerator
    else:
        raise NotImplementedError(f"No such generator kind = {kind}")
    return cl(**kwargs)