File size: 19,262 Bytes
24eb05d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import enum
from copy import deepcopy

import numpy as np
from skimage import img_as_ubyte
from skimage.transform import rescale, resize
try:
    from detectron2 import model_zoo
    from detectron2.config import get_cfg
    from detectron2.engine import DefaultPredictor
    DETECTRON_INSTALLED = True
except:
    print("Detectron v2 is not installed")
    DETECTRON_INSTALLED = False

from .countless.countless2d import zero_corrected_countless


class ObjectMask():
    def __init__(self, mask):
        self.height, self.width = mask.shape
        (self.up, self.down), (self.left, self.right) = self._get_limits(mask)
        self.mask = mask[self.up:self.down, self.left:self.right].copy()

    @staticmethod
    def _get_limits(mask):
        def indicator_limits(indicator):
            lower = indicator.argmax()
            upper = len(indicator) - indicator[::-1].argmax()
            return lower, upper

        vertical_indicator = mask.any(axis=1)
        vertical_limits = indicator_limits(vertical_indicator)

        horizontal_indicator = mask.any(axis=0)
        horizontal_limits = indicator_limits(horizontal_indicator)

        return vertical_limits, horizontal_limits

    def _clean(self):
        self.up, self.down, self.left, self.right = 0, 0, 0, 0
        self.mask = np.empty((0, 0))

    def horizontal_flip(self, inplace=False):
        if not inplace:
            flipped = deepcopy(self)
            return flipped.horizontal_flip(inplace=True)

        self.mask = self.mask[:, ::-1]
        return self

    def vertical_flip(self, inplace=False):
        if not inplace:
            flipped = deepcopy(self)
            return flipped.vertical_flip(inplace=True)

        self.mask = self.mask[::-1, :]
        return self

    def image_center(self):
        y_center = self.up + (self.down - self.up) / 2
        x_center = self.left + (self.right - self.left) / 2
        return y_center, x_center

    def rescale(self, scaling_factor, inplace=False):
        if not inplace:
            scaled = deepcopy(self)
            return scaled.rescale(scaling_factor, inplace=True)

        scaled_mask = rescale(self.mask.astype(float), scaling_factor, order=0) > 0.5
        (up, down), (left, right) = self._get_limits(scaled_mask)
        self.mask = scaled_mask[up:down, left:right]

        y_center, x_center = self.image_center()
        mask_height, mask_width = self.mask.shape
        self.up = int(round(y_center - mask_height / 2))
        self.down = self.up + mask_height
        self.left = int(round(x_center - mask_width / 2))
        self.right = self.left + mask_width
        return self

    def crop_to_canvas(self, vertical=True, horizontal=True, inplace=False):
        if not inplace:
            cropped = deepcopy(self)
            cropped.crop_to_canvas(vertical=vertical, horizontal=horizontal, inplace=True)
            return cropped

        if vertical:
            if self.up >= self.height or self.down <= 0:
                self._clean()
            else:
                cut_up, cut_down = max(-self.up, 0), max(self.down - self.height, 0)
                if cut_up != 0:
                    self.mask = self.mask[cut_up:]
                    self.up = 0
                if cut_down != 0:
                    self.mask = self.mask[:-cut_down]
                    self.down = self.height

        if horizontal:
            if self.left >= self.width or self.right <= 0:
                self._clean()
            else:
                cut_left, cut_right = max(-self.left, 0), max(self.right - self.width, 0)
                if cut_left != 0:
                    self.mask = self.mask[:, cut_left:]
                    self.left = 0
                if cut_right != 0:
                    self.mask = self.mask[:, :-cut_right]
                    self.right = self.width

        return self

    def restore_full_mask(self, allow_crop=False):
        cropped = self.crop_to_canvas(inplace=allow_crop)
        mask = np.zeros((cropped.height, cropped.width), dtype=bool)
        mask[cropped.up:cropped.down, cropped.left:cropped.right] = cropped.mask
        return mask

    def shift(self, vertical=0, horizontal=0, inplace=False):
        if not inplace:
            shifted = deepcopy(self)
            return shifted.shift(vertical=vertical, horizontal=horizontal, inplace=True)

        self.up += vertical
        self.down += vertical
        self.left += horizontal
        self.right += horizontal
        return self

    def area(self):
        return self.mask.sum()


class RigidnessMode(enum.Enum):
    soft = 0
    rigid = 1


class SegmentationMask:
    def __init__(self, confidence_threshold=0.5, rigidness_mode=RigidnessMode.rigid,
                 max_object_area=0.3, min_mask_area=0.02, downsample_levels=6, num_variants_per_mask=4,
                 max_mask_intersection=0.5, max_foreground_coverage=0.5, max_foreground_intersection=0.5,
                 max_hidden_area=0.2, max_scale_change=0.25, horizontal_flip=True,
                 max_vertical_shift=0.1, position_shuffle=True):
        """
        :param confidence_threshold: float; threshold for confidence of the panoptic segmentator to allow for
        the instance.
        :param rigidness_mode: RigidnessMode object
            when soft, checks intersection only with the object from which the mask_object was produced
            when rigid, checks intersection with any foreground class object
        :param max_object_area: float; allowed upper bound for to be considered as mask_object.
        :param min_mask_area: float; lower bound for mask to be considered valid
        :param downsample_levels: int; defines width of the resized segmentation to obtain shifted masks;
        :param num_variants_per_mask: int; maximal number of the masks for the same object;
        :param max_mask_intersection: float; maximum allowed area fraction of intersection for 2 masks
        produced by horizontal shift of the same mask_object; higher value -> more diversity
        :param max_foreground_coverage: float; maximum allowed area fraction of intersection for foreground object to be
        covered by mask; lower value -> less the objects are covered
        :param max_foreground_intersection: float; maximum allowed area of intersection for the mask with foreground
        object; lower value -> mask is more on the background than on the objects
        :param max_hidden_area: upper bound on part of the object hidden by shifting object outside the screen area;
        :param max_scale_change: allowed scale change for the mask_object;
        :param horizontal_flip: if horizontal flips are allowed;
        :param max_vertical_shift: amount of vertical movement allowed;
        :param position_shuffle: shuffle
        """

        assert DETECTRON_INSTALLED, 'Cannot use SegmentationMask without detectron2'
        self.cfg = get_cfg()
        self.cfg.merge_from_file(model_zoo.get_config_file("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml"))
        self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml")
        self.cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = confidence_threshold
        self.predictor = DefaultPredictor(self.cfg)

        self.rigidness_mode = RigidnessMode(rigidness_mode)
        self.max_object_area = max_object_area
        self.min_mask_area = min_mask_area
        self.downsample_levels = downsample_levels
        self.num_variants_per_mask = num_variants_per_mask
        self.max_mask_intersection = max_mask_intersection
        self.max_foreground_coverage = max_foreground_coverage
        self.max_foreground_intersection = max_foreground_intersection
        self.max_hidden_area = max_hidden_area
        self.position_shuffle = position_shuffle

        self.max_scale_change = max_scale_change
        self.horizontal_flip = horizontal_flip
        self.max_vertical_shift = max_vertical_shift

    def get_segmentation(self, img):
        im = img_as_ubyte(img)
        panoptic_seg, segment_info = self.predictor(im)["panoptic_seg"]
        return panoptic_seg, segment_info

    @staticmethod
    def _is_power_of_two(n):
        return (n != 0) and (n & (n-1) == 0)

    def identify_candidates(self, panoptic_seg, segments_info):
        potential_mask_ids = []
        for segment in segments_info:
            if not segment["isthing"]:
                continue
            mask = (panoptic_seg == segment["id"]).int().detach().cpu().numpy()
            area = mask.sum().item() / np.prod(panoptic_seg.shape)
            if area >= self.max_object_area:
                continue
            potential_mask_ids.append(segment["id"])
        return potential_mask_ids

    def downsample_mask(self, mask):
        height, width = mask.shape
        if not (self._is_power_of_two(height) and self._is_power_of_two(width)):
            raise ValueError("Image sides are not power of 2.")

        num_iterations = width.bit_length() - 1 - self.downsample_levels
        if num_iterations < 0:
            raise ValueError(f"Width is lower than 2^{self.downsample_levels}.")

        if height.bit_length() - 1 < num_iterations:
            raise ValueError("Height is too low to perform downsampling")

        downsampled = mask
        for _ in range(num_iterations):
            downsampled = zero_corrected_countless(downsampled)

        return downsampled

    def _augmentation_params(self):
        scaling_factor = np.random.uniform(1 - self.max_scale_change, 1 + self.max_scale_change)
        if self.horizontal_flip:
            horizontal_flip = bool(np.random.choice(2))
        else:
            horizontal_flip = False
        vertical_shift = np.random.uniform(-self.max_vertical_shift, self.max_vertical_shift)

        return {
            "scaling_factor": scaling_factor,
            "horizontal_flip": horizontal_flip,
            "vertical_shift": vertical_shift
        }

    def _get_intersection(self, mask_array, mask_object):
        intersection = mask_array[
            mask_object.up:mask_object.down, mask_object.left:mask_object.right
        ] & mask_object.mask
        return intersection

    def _check_masks_intersection(self, aug_mask, total_mask_area, prev_masks):
        for existing_mask in prev_masks:
            intersection_area = self._get_intersection(existing_mask, aug_mask).sum()
            intersection_existing = intersection_area / existing_mask.sum()
            intersection_current = 1 - (aug_mask.area() - intersection_area) / total_mask_area
            if (intersection_existing > self.max_mask_intersection) or \
               (intersection_current > self.max_mask_intersection):
                return False
        return True

    def _check_foreground_intersection(self, aug_mask, foreground):
        for existing_mask in foreground:
            intersection_area = self._get_intersection(existing_mask, aug_mask).sum()
            intersection_existing = intersection_area / existing_mask.sum()
            if intersection_existing > self.max_foreground_coverage:
                return False
            intersection_mask = intersection_area / aug_mask.area()
            if intersection_mask > self.max_foreground_intersection:
                return False
        return True

    def _move_mask(self, mask, foreground):
        # Obtaining properties of the original mask_object:
        orig_mask = ObjectMask(mask)

        chosen_masks = []
        chosen_parameters = []
        # to fix the case when resizing gives mask_object consisting only of False
        scaling_factor_lower_bound = 0.

        for var_idx in range(self.num_variants_per_mask):
            # Obtaining augmentation parameters and applying them to the downscaled mask_object
            augmentation_params = self._augmentation_params()
            augmentation_params["scaling_factor"] = min([
                augmentation_params["scaling_factor"],
                2 * min(orig_mask.up, orig_mask.height - orig_mask.down) / orig_mask.height + 1.,
                2 * min(orig_mask.left, orig_mask.width - orig_mask.right) / orig_mask.width + 1.
            ])
            augmentation_params["scaling_factor"] = max([
                augmentation_params["scaling_factor"], scaling_factor_lower_bound
            ])

            aug_mask = deepcopy(orig_mask)
            aug_mask.rescale(augmentation_params["scaling_factor"], inplace=True)
            if augmentation_params["horizontal_flip"]:
                aug_mask.horizontal_flip(inplace=True)
            total_aug_area = aug_mask.area()
            if total_aug_area == 0:
                scaling_factor_lower_bound = 1.
                continue

            # Fix if the element vertical shift is too strong and shown area is too small:
            vertical_area = aug_mask.mask.sum(axis=1) / total_aug_area  # share of area taken by rows
            # number of rows which are allowed to be hidden from upper and lower parts of image respectively
            max_hidden_up = np.searchsorted(vertical_area.cumsum(), self.max_hidden_area)
            max_hidden_down = np.searchsorted(vertical_area[::-1].cumsum(), self.max_hidden_area)
            # correcting vertical shift, so not too much area will be hidden
            augmentation_params["vertical_shift"] = np.clip(
                augmentation_params["vertical_shift"],
                -(aug_mask.up + max_hidden_up) / aug_mask.height,
                (aug_mask.height - aug_mask.down + max_hidden_down) / aug_mask.height
            )
            # Applying vertical shift:
            vertical_shift = int(round(aug_mask.height * augmentation_params["vertical_shift"]))
            aug_mask.shift(vertical=vertical_shift, inplace=True)
            aug_mask.crop_to_canvas(vertical=True, horizontal=False, inplace=True)

            # Choosing horizontal shift:
            max_hidden_area = self.max_hidden_area - (1 - aug_mask.area() / total_aug_area)
            horizontal_area = aug_mask.mask.sum(axis=0) / total_aug_area
            max_hidden_left = np.searchsorted(horizontal_area.cumsum(), max_hidden_area)
            max_hidden_right = np.searchsorted(horizontal_area[::-1].cumsum(), max_hidden_area)
            allowed_shifts = np.arange(-max_hidden_left, aug_mask.width -
                                      (aug_mask.right - aug_mask.left) + max_hidden_right + 1)
            allowed_shifts = - (aug_mask.left - allowed_shifts)

            if self.position_shuffle:
                np.random.shuffle(allowed_shifts)

            mask_is_found = False
            for horizontal_shift in allowed_shifts:
                aug_mask_left = deepcopy(aug_mask)
                aug_mask_left.shift(horizontal=horizontal_shift, inplace=True)
                aug_mask_left.crop_to_canvas(inplace=True)

                prev_masks = [mask] + chosen_masks
                is_mask_suitable = self._check_masks_intersection(aug_mask_left, total_aug_area, prev_masks) & \
                                   self._check_foreground_intersection(aug_mask_left, foreground)
                if is_mask_suitable:
                    aug_draw = aug_mask_left.restore_full_mask()
                    chosen_masks.append(aug_draw)
                    augmentation_params["horizontal_shift"] = horizontal_shift / aug_mask_left.width
                    chosen_parameters.append(augmentation_params)
                    mask_is_found = True
                    break

            if not mask_is_found:
                break

        return chosen_parameters

    def _prepare_mask(self, mask):
        height, width = mask.shape
        target_width = width if self._is_power_of_two(width) else (1 << width.bit_length())
        target_height = height if self._is_power_of_two(height) else (1 << height.bit_length())

        return resize(mask.astype('float32'), (target_height, target_width), order=0, mode='edge').round().astype('int32')

    def get_masks(self, im, return_panoptic=False):
        panoptic_seg, segments_info = self.get_segmentation(im)
        potential_mask_ids = self.identify_candidates(panoptic_seg, segments_info)

        panoptic_seg_scaled = self._prepare_mask(panoptic_seg.detach().cpu().numpy())
        downsampled = self.downsample_mask(panoptic_seg_scaled)
        scene_objects = []
        for segment in segments_info:
            if not segment["isthing"]:
                continue
            mask = downsampled == segment["id"]
            if not np.any(mask):
                continue
            scene_objects.append(mask)

        mask_set = []
        for mask_id in potential_mask_ids:
            mask = downsampled == mask_id
            if not np.any(mask):
                continue

            if self.rigidness_mode is RigidnessMode.soft:
                foreground = [mask]
            elif self.rigidness_mode is RigidnessMode.rigid:
                foreground = scene_objects
            else:
                raise ValueError(f'Unexpected rigidness_mode: {rigidness_mode}')

            masks_params = self._move_mask(mask, foreground)

            full_mask = ObjectMask((panoptic_seg == mask_id).detach().cpu().numpy())

            for params in masks_params:
                aug_mask = deepcopy(full_mask)
                aug_mask.rescale(params["scaling_factor"], inplace=True)
                if params["horizontal_flip"]:
                    aug_mask.horizontal_flip(inplace=True)

                vertical_shift = int(round(aug_mask.height * params["vertical_shift"]))
                horizontal_shift = int(round(aug_mask.width * params["horizontal_shift"]))
                aug_mask.shift(vertical=vertical_shift, horizontal=horizontal_shift, inplace=True)
                aug_mask = aug_mask.restore_full_mask().astype('uint8')
                if aug_mask.mean() <= self.min_mask_area:
                    continue
                mask_set.append(aug_mask)

        if return_panoptic:
            return mask_set, panoptic_seg.detach().cpu().numpy()
        else:
            return mask_set


def propose_random_square_crop(mask, min_overlap=0.5):
    height, width = mask.shape
    mask_ys, mask_xs = np.where(mask > 0.5)  # mask==0 is known fragment and mask==1 is missing

    if height < width:
        crop_size = height
        obj_left, obj_right = mask_xs.min(), mask_xs.max()
        obj_width = obj_right - obj_left
        left_border = max(0, min(width - crop_size - 1, obj_left + obj_width * min_overlap - crop_size))
        right_border = max(left_border + 1, min(width - crop_size, obj_left + obj_width * min_overlap))
        start_x = np.random.randint(left_border, right_border)
        return start_x, 0, start_x + crop_size, height
    else:
        crop_size = width
        obj_top, obj_bottom = mask_ys.min(), mask_ys.max()
        obj_height = obj_bottom - obj_top
        top_border = max(0, min(height - crop_size - 1, obj_top + obj_height * min_overlap - crop_size))
        bottom_border = max(top_border + 1, min(height - crop_size, obj_top + obj_height * min_overlap))
        start_y = np.random.randint(top_border, bottom_border)
        return 0, start_y, width, start_y + crop_size