File size: 16,191 Bytes
6a8fc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d506cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a8fc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d506cd1
 
6a8fc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d506cd1
6a8fc54
 
 
 
 
 
 
 
 
 
 
 
c9a6087
6a8fc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d506cd1
 
 
 
6a8fc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a6087
6a8fc54
d506cd1
6a8fc54
d506cd1
6a8fc54
d506cd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a8fc54
 
 
 
c9a6087
d506cd1
7a168b3
c9a6087
6a8fc54
c9a6087
 
 
6a8fc54
c9a6087
 
 
6a8fc54
c9a6087
 
 
6a8fc54
c9a6087
 
 
6a8fc54
c9a6087
 
6a8fc54
 
 
 
 
 
 
 
 
 
 
c9a6087
6a8fc54
 
 
 
 
 
 
 
 
 
 
 
d506cd1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import os
import random
from pathlib import Path
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from PIL import Image
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_emo import EMOUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echomimicv2 import EchoMimicV2Pipeline
from src.utils.util import save_videos_grid
from src.models.pose_encoder import PoseEncoder
from src.utils.dwpose_util import draw_pose_select_v2
from moviepy.editor import VideoFileClip, AudioFileClip

import gradio as gr
from datetime import datetime
from torchao.quantization import quantize_, int8_weight_only
import gc

import tempfile
from pydub import AudioSegment

def cut_audio_to_5_seconds(audio_path):
    try:
        # Load the audio file
        audio = AudioSegment.from_file(audio_path)

        # Trim to a maximum of 5 seconds (5000 milliseconds)
        trimmed_audio = audio[:5000]

        # Create a temporary directory
        temp_dir = tempfile.mkdtemp()
        output_path = os.path.join(temp_dir, "trimmed_audio.wav")

        # Export the trimmed audio
        trimmed_audio.export(output_path, format="wav")

        return output_path
    except Exception as e:
        return f"An error occurred while trying to trim audio: {str(e)}"

import requests
import tarfile

def download_and_setup_ffmpeg():
    url = "https://www.johnvansickle.com/ffmpeg/old-releases/ffmpeg-4.4-amd64-static.tar.xz"
    download_path = "ffmpeg-4.4-amd64-static.tar.xz"
    extract_dir = "ffmpeg-4.4-amd64-static"
    
    try:
        # Download the file
        response = requests.get(url, stream=True)
        response.raise_for_status()  # Check for HTTP request errors
        with open(download_path, "wb") as file:
            for chunk in response.iter_content(chunk_size=8192):
                file.write(chunk)

        # Extract the tar.xz file
        with tarfile.open(download_path, "r:xz") as tar:
            tar.extractall(path=extract_dir)
        
        # Set the FFMPEG_PATH environment variable
        ffmpeg_binary_path = os.path.join(extract_dir, "ffmpeg-4.4-amd64-static", "ffmpeg")
        os.environ["FFMPEG_PATH"] = ffmpeg_binary_path
        
        return f"FFmpeg downloaded and setup successfully! Path: {ffmpeg_binary_path}"
    except Exception as e:
        return f"An error occurred: {str(e)}"

download_and_setup_ffmpeg()

from huggingface_hub import snapshot_download

# Create the main "pretrained_weights" folder
os.makedirs("pretrained_weights", exist_ok=True)

# List of subdirectories to create inside "pretrained_weights"
subfolders = [
    "sd-vae-ft-mse",
    "sd-image-variations-diffusers",
    "audio_processor"
]

# Create each subdirectory
for subfolder in subfolders:
    os.makedirs(os.path.join("pretrained_weights", subfolder), exist_ok=True)
    
snapshot_download(
    repo_id = "BadToBest/EchoMimicV2",
    local_dir="./pretrained_weights"
)
snapshot_download(
    repo_id = "stabilityai/sd-vae-ft-mse",
    local_dir="./pretrained_weights/sd-vae-ft-mse"
)
snapshot_download(
    repo_id = "lambdalabs/sd-image-variations-diffusers",
    local_dir="./pretrained_weights/sd-image-variations-diffusers"
)

is_shared_ui = True if "fffiloni/echomimic-v2" in os.environ['SPACE_ID'] else False

# Download and place the Whisper model in the "audio_processor" folder
def download_whisper_model():
    url = "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt"
    save_path = os.path.join("pretrained_weights", "audio_processor", "tiny.pt")
    
    try:
        # Download the file
        response = requests.get(url, stream=True)
        response.raise_for_status()  # Check for HTTP request errors
        with open(save_path, "wb") as file:
            for chunk in response.iter_content(chunk_size=8192):
                file.write(chunk)
        print(f"Whisper model downloaded and saved to {save_path}")
    except Exception as e:
        print(f"An error occurred while downloading the model: {str(e)}")

# Download the Whisper model
download_whisper_model()

total_vram_in_gb = torch.cuda.get_device_properties(0).total_memory / 1073741824
print(f'\033[32mCUDA版本:{torch.version.cuda}\033[0m')
print(f'\033[32mPytorch版本:{torch.__version__}\033[0m')
print(f'\033[32m显卡型号:{torch.cuda.get_device_name()}\033[0m')
print(f'\033[32m显存大小:{total_vram_in_gb:.2f}GB\033[0m')
print(f'\033[32m精度:float16\033[0m')
dtype = torch.float16
if torch.cuda.is_available():
        device = "cuda"
else:
    print("cuda not available, using cpu")
    device = "cpu"

ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
    print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=./ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
    print("add ffmpeg to path")
    os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"


def generate(image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed, progress=gr.Progress(track_tqdm=True)):
    gc.collect()
    torch.cuda.empty_cache()
    torch.cuda.ipc_collect()
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    save_dir = Path("outputs")
    save_dir.mkdir(exist_ok=True, parents=True)

    ############# model_init started #############
    ## vae init
    vae = AutoencoderKL.from_pretrained("./pretrained_weights/sd-vae-ft-mse").to(device, dtype=dtype)
    if quantization_input:
        quantize_(vae, int8_weight_only())
        print("Use int8 quantization.")

    ## reference net init
    reference_unet = UNet2DConditionModel.from_pretrained("./pretrained_weights/sd-image-variations-diffusers", subfolder="unet", use_safetensors=False).to(dtype=dtype, device=device)
    reference_unet.load_state_dict(torch.load("./pretrained_weights/reference_unet.pth", weights_only=True))
    if quantization_input:
        quantize_(reference_unet, int8_weight_only())

    ## denoising net init
    if os.path.exists("./pretrained_weights/motion_module.pth"):
        print('using motion module')
    else:
        exit("motion module not found")
        ### stage1 + stage2
    denoising_unet = EMOUNet3DConditionModel.from_pretrained_2d(
        "./pretrained_weights/sd-image-variations-diffusers",
        "./pretrained_weights/motion_module.pth",
        subfolder="unet",
        unet_additional_kwargs = {
            "use_inflated_groupnorm": True,
            "unet_use_cross_frame_attention": False,
            "unet_use_temporal_attention": False,
            "use_motion_module": True,
            "cross_attention_dim": 384,
            "motion_module_resolutions": [
                1,
                2,
                4,
                8
            ],
            "motion_module_mid_block": True ,
            "motion_module_decoder_only": False,
            "motion_module_type": "Vanilla",
            "motion_module_kwargs":{
                "num_attention_heads": 8,
                "num_transformer_block": 1,
                "attention_block_types": [
                    'Temporal_Self',
                    'Temporal_Self'
                ],
                "temporal_position_encoding": True,
                "temporal_position_encoding_max_len": 32,
                "temporal_attention_dim_div": 1,
            }
        },
    ).to(dtype=dtype, device=device)
    denoising_unet.load_state_dict(torch.load("./pretrained_weights/denoising_unet.pth", weights_only=True),strict=False)

    # pose net init
    pose_net = PoseEncoder(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(dtype=dtype, device=device)
    pose_net.load_state_dict(torch.load("./pretrained_weights/pose_encoder.pth", weights_only=True))

    ### load audio processor params
    audio_processor = load_audio_model(model_path="./pretrained_weights/audio_processor/tiny.pt", device=device)
   
    ############# model_init finished #############
    sched_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "linear",
        "clip_sample": False,
        "steps_offset": 1,
        "prediction_type": "v_prediction",
        "rescale_betas_zero_snr": True,
        "timestep_spacing": "trailing"
    }
    scheduler = DDIMScheduler(**sched_kwargs)

    pipe = EchoMimicV2Pipeline(
        vae=vae,
        reference_unet=reference_unet,
        denoising_unet=denoising_unet,
        audio_guider=audio_processor,
        pose_encoder=pose_net,
        scheduler=scheduler,
    )

    pipe = pipe.to(device, dtype=dtype)

    if seed is not None and seed > -1:
        generator = torch.manual_seed(seed)
    else:
        seed = random.randint(100, 1000000)
        generator = torch.manual_seed(seed)

    if is_shared_ui:
        audio_input = cut_audio_to_5_seconds(audio_input)
        print(f"Trimmed audio saved at: {audio_input}")

    inputs_dict = {
        "refimg": image_input,
        "audio": audio_input,
        "pose": pose_input,
    }

    print('Pose:', inputs_dict['pose'])
    print('Reference:', inputs_dict['refimg'])
    print('Audio:', inputs_dict['audio'])

    save_name = f"{save_dir}/{timestamp}"
    
    ref_image_pil = Image.open(inputs_dict['refimg']).resize((width, height))
    audio_clip = AudioFileClip(inputs_dict['audio'])
    
    length = min(length, int(audio_clip.duration * fps), len(os.listdir(inputs_dict['pose'])))

    start_idx = 0

    pose_list = []
    for index in range(start_idx, start_idx + length):
        tgt_musk = np.zeros((width, height, 3)).astype('uint8')
        tgt_musk_path = os.path.join(inputs_dict['pose'], "{}.npy".format(index))
        detected_pose = np.load(tgt_musk_path, allow_pickle=True).tolist()
        imh_new, imw_new, rb, re, cb, ce = detected_pose['draw_pose_params']
        im = draw_pose_select_v2(detected_pose, imh_new, imw_new, ref_w=800)
        im = np.transpose(np.array(im),(1, 2, 0))
        tgt_musk[rb:re,cb:ce,:] = im

        tgt_musk_pil = Image.fromarray(np.array(tgt_musk)).convert('RGB')
        pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=dtype, device=device).permute(2,0,1) / 255.0)
    
    poses_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
    audio_clip = AudioFileClip(inputs_dict['audio'])
    
    audio_clip = audio_clip.set_duration(length / fps)
    video = pipe(
        ref_image_pil,
        inputs_dict['audio'],
        poses_tensor[:,:,:length,...],
        width,
        height,
        length,
        steps,
        cfg,
        generator=generator,
        audio_sample_rate=sample_rate,
        context_frames=context_frames,
        fps=fps,
        context_overlap=context_overlap,
        start_idx=start_idx,
    ).videos 
    
    final_length = min(video.shape[2], poses_tensor.shape[2], length)
    video_sig = video[:, :, :final_length, :, :]
    
    save_videos_grid(
        video_sig,
        save_name + "_woa_sig.mp4",
        n_rows=1,
        fps=fps,
    )

    video_clip_sig = VideoFileClip(save_name + "_woa_sig.mp4",)
    video_clip_sig = video_clip_sig.set_audio(audio_clip)
    video_clip_sig.write_videofile(save_name + "_sig.mp4", codec="libx264", audio_codec="aac", threads=2)
    video_output = save_name + "_sig.mp4"
    seed_text = gr.update(visible=True, value=seed)
    return video_output, seed_text


with gr.Blocks() as demo:
    gr.Markdown("""
            # EchoMimicV2
            
            ⚠️ This demonstration is for academic research and experiential use only.
            """)
    gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://github.com/antgroup/echomimic_v2">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href="https://antgroup.github.io/ai/echomimic_v2/">
                <img src='https://img.shields.io/badge/Project-Page-green'>
            </a>
			<a href="https://arxiv.org/abs/2411.10061">
                <img src='https://img.shields.io/badge/ArXiv-Paper-red'>
            </a>
            <a href="https://huggingface.co/spaces/fffiloni/echomimic-v2?duplicate=true">
				<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
			</a>
			<a href="https://huggingface.co/fffiloni">
				<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
			</a>
        </div>
        """)
    with gr.Column():
        with gr.Row():
            with gr.Column():
                with gr.Group():
                    image_input = gr.Image(label="Image Input (Auto Scaling)", type="filepath")
                    audio_input = gr.Audio(label="Audio Input - max 5 seconds on shared UI", type="filepath")
                    pose_input = gr.Textbox(label="Pose Input (Directory Path)", placeholder="Please enter the directory path for pose data.", value="assets/halfbody_demo/pose/01", interactive=False, visible=False)
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Row():
                        width = gr.Number(label="Width (multiple of 16, recommended: 768)", value=768)
                        height = gr.Number(label="Height (multiple of 16, recommended: 768)", value=768)
                        length = gr.Number(label="Video Length (recommended: 240)", value=240)
                    with gr.Row():
                        steps = gr.Number(label="Steps (recommended: 30)", value=20)
                        sample_rate = gr.Number(label="Sampling Rate (recommended: 16000)", value=16000)
                        cfg = gr.Number(label="CFG (recommended: 2.5)", value=2.5, step=0.1)
                    with gr.Row():
                        fps = gr.Number(label="Frame Rate (recommended: 24)", value=24)
                        context_frames = gr.Number(label="Context Frames (recommended: 12)", value=12)
                        context_overlap = gr.Number(label="Context Overlap (recommended: 3)", value=3)
                    with gr.Row():
                        quantization_input = gr.Checkbox(label="Int8 Quantization (recommended for users with 12GB VRAM, use audio no longer than 5 seconds)", value=False)
                        seed = gr.Number(label="Seed (-1 for random)", value=-1)
                generate_button = gr.Button("🎬 Generate Video")
            with gr.Column():
                video_output = gr.Video(label="Output Video")
                seed_text = gr.Textbox(label="Seed", interactive=False, visible=False)
        gr.Examples(
            examples=[
                ["EMTD_dataset/ref_imgs_by_FLUX/man/0001.png", "assets/halfbody_demo/audio/chinese/echomimicv2_man.wav"],
                ["EMTD_dataset/ref_imgs_by_FLUX/woman/0077.png", "assets/halfbody_demo/audio/chinese/echomimicv2_woman.wav"],
                ["EMTD_dataset/ref_imgs_by_FLUX/man/0003.png", "assets/halfbody_demo/audio/chinese/fighting.wav"],
                ["EMTD_dataset/ref_imgs_by_FLUX/woman/0033.png", "assets/halfbody_demo/audio/chinese/good.wav"],
                ["EMTD_dataset/ref_imgs_by_FLUX/man/0010.png", "assets/halfbody_demo/audio/chinese/news.wav"],
                ["EMTD_dataset/ref_imgs_by_FLUX/man/1168.png", "assets/halfbody_demo/audio/chinese/no_smoking.wav"],
                ["EMTD_dataset/ref_imgs_by_FLUX/woman/0057.png", "assets/halfbody_demo/audio/chinese/ultraman.wav"]
            ],
            inputs=[image_input, audio_input],  
            label="Preset Characters and Audio",
        )

    generate_button.click(
        generate,
        inputs=[image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed],
        outputs=[video_output, seed_text],
    )



if __name__ == "__main__":
    demo.queue()
    demo.launch(show_api=False, show_error=True, ssr_mode=False)