Spaces:
Running
on
L40S
Running
on
L40S
File size: 16,191 Bytes
6a8fc54 d506cd1 6a8fc54 d506cd1 6a8fc54 d506cd1 6a8fc54 c9a6087 6a8fc54 d506cd1 6a8fc54 c9a6087 6a8fc54 d506cd1 6a8fc54 d506cd1 6a8fc54 d506cd1 6a8fc54 c9a6087 d506cd1 7a168b3 c9a6087 6a8fc54 c9a6087 6a8fc54 c9a6087 6a8fc54 c9a6087 6a8fc54 c9a6087 6a8fc54 c9a6087 6a8fc54 c9a6087 6a8fc54 d506cd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import os
import random
from pathlib import Path
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from PIL import Image
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_emo import EMOUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echomimicv2 import EchoMimicV2Pipeline
from src.utils.util import save_videos_grid
from src.models.pose_encoder import PoseEncoder
from src.utils.dwpose_util import draw_pose_select_v2
from moviepy.editor import VideoFileClip, AudioFileClip
import gradio as gr
from datetime import datetime
from torchao.quantization import quantize_, int8_weight_only
import gc
import tempfile
from pydub import AudioSegment
def cut_audio_to_5_seconds(audio_path):
try:
# Load the audio file
audio = AudioSegment.from_file(audio_path)
# Trim to a maximum of 5 seconds (5000 milliseconds)
trimmed_audio = audio[:5000]
# Create a temporary directory
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, "trimmed_audio.wav")
# Export the trimmed audio
trimmed_audio.export(output_path, format="wav")
return output_path
except Exception as e:
return f"An error occurred while trying to trim audio: {str(e)}"
import requests
import tarfile
def download_and_setup_ffmpeg():
url = "https://www.johnvansickle.com/ffmpeg/old-releases/ffmpeg-4.4-amd64-static.tar.xz"
download_path = "ffmpeg-4.4-amd64-static.tar.xz"
extract_dir = "ffmpeg-4.4-amd64-static"
try:
# Download the file
response = requests.get(url, stream=True)
response.raise_for_status() # Check for HTTP request errors
with open(download_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
# Extract the tar.xz file
with tarfile.open(download_path, "r:xz") as tar:
tar.extractall(path=extract_dir)
# Set the FFMPEG_PATH environment variable
ffmpeg_binary_path = os.path.join(extract_dir, "ffmpeg-4.4-amd64-static", "ffmpeg")
os.environ["FFMPEG_PATH"] = ffmpeg_binary_path
return f"FFmpeg downloaded and setup successfully! Path: {ffmpeg_binary_path}"
except Exception as e:
return f"An error occurred: {str(e)}"
download_and_setup_ffmpeg()
from huggingface_hub import snapshot_download
# Create the main "pretrained_weights" folder
os.makedirs("pretrained_weights", exist_ok=True)
# List of subdirectories to create inside "pretrained_weights"
subfolders = [
"sd-vae-ft-mse",
"sd-image-variations-diffusers",
"audio_processor"
]
# Create each subdirectory
for subfolder in subfolders:
os.makedirs(os.path.join("pretrained_weights", subfolder), exist_ok=True)
snapshot_download(
repo_id = "BadToBest/EchoMimicV2",
local_dir="./pretrained_weights"
)
snapshot_download(
repo_id = "stabilityai/sd-vae-ft-mse",
local_dir="./pretrained_weights/sd-vae-ft-mse"
)
snapshot_download(
repo_id = "lambdalabs/sd-image-variations-diffusers",
local_dir="./pretrained_weights/sd-image-variations-diffusers"
)
is_shared_ui = True if "fffiloni/echomimic-v2" in os.environ['SPACE_ID'] else False
# Download and place the Whisper model in the "audio_processor" folder
def download_whisper_model():
url = "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt"
save_path = os.path.join("pretrained_weights", "audio_processor", "tiny.pt")
try:
# Download the file
response = requests.get(url, stream=True)
response.raise_for_status() # Check for HTTP request errors
with open(save_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"Whisper model downloaded and saved to {save_path}")
except Exception as e:
print(f"An error occurred while downloading the model: {str(e)}")
# Download the Whisper model
download_whisper_model()
total_vram_in_gb = torch.cuda.get_device_properties(0).total_memory / 1073741824
print(f'\033[32mCUDA版本:{torch.version.cuda}\033[0m')
print(f'\033[32mPytorch版本:{torch.__version__}\033[0m')
print(f'\033[32m显卡型号:{torch.cuda.get_device_name()}\033[0m')
print(f'\033[32m显存大小:{total_vram_in_gb:.2f}GB\033[0m')
print(f'\033[32m精度:float16\033[0m')
dtype = torch.float16
if torch.cuda.is_available():
device = "cuda"
else:
print("cuda not available, using cpu")
device = "cpu"
ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=./ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
print("add ffmpeg to path")
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
def generate(image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed, progress=gr.Progress(track_tqdm=True)):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_dir = Path("outputs")
save_dir.mkdir(exist_ok=True, parents=True)
############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained("./pretrained_weights/sd-vae-ft-mse").to(device, dtype=dtype)
if quantization_input:
quantize_(vae, int8_weight_only())
print("Use int8 quantization.")
## reference net init
reference_unet = UNet2DConditionModel.from_pretrained("./pretrained_weights/sd-image-variations-diffusers", subfolder="unet", use_safetensors=False).to(dtype=dtype, device=device)
reference_unet.load_state_dict(torch.load("./pretrained_weights/reference_unet.pth", weights_only=True))
if quantization_input:
quantize_(reference_unet, int8_weight_only())
## denoising net init
if os.path.exists("./pretrained_weights/motion_module.pth"):
print('using motion module')
else:
exit("motion module not found")
### stage1 + stage2
denoising_unet = EMOUNet3DConditionModel.from_pretrained_2d(
"./pretrained_weights/sd-image-variations-diffusers",
"./pretrained_weights/motion_module.pth",
subfolder="unet",
unet_additional_kwargs = {
"use_inflated_groupnorm": True,
"unet_use_cross_frame_attention": False,
"unet_use_temporal_attention": False,
"use_motion_module": True,
"cross_attention_dim": 384,
"motion_module_resolutions": [
1,
2,
4,
8
],
"motion_module_mid_block": True ,
"motion_module_decoder_only": False,
"motion_module_type": "Vanilla",
"motion_module_kwargs":{
"num_attention_heads": 8,
"num_transformer_block": 1,
"attention_block_types": [
'Temporal_Self',
'Temporal_Self'
],
"temporal_position_encoding": True,
"temporal_position_encoding_max_len": 32,
"temporal_attention_dim_div": 1,
}
},
).to(dtype=dtype, device=device)
denoising_unet.load_state_dict(torch.load("./pretrained_weights/denoising_unet.pth", weights_only=True),strict=False)
# pose net init
pose_net = PoseEncoder(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(dtype=dtype, device=device)
pose_net.load_state_dict(torch.load("./pretrained_weights/pose_encoder.pth", weights_only=True))
### load audio processor params
audio_processor = load_audio_model(model_path="./pretrained_weights/audio_processor/tiny.pt", device=device)
############# model_init finished #############
sched_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "linear",
"clip_sample": False,
"steps_offset": 1,
"prediction_type": "v_prediction",
"rescale_betas_zero_snr": True,
"timestep_spacing": "trailing"
}
scheduler = DDIMScheduler(**sched_kwargs)
pipe = EchoMimicV2Pipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
audio_guider=audio_processor,
pose_encoder=pose_net,
scheduler=scheduler,
)
pipe = pipe.to(device, dtype=dtype)
if seed is not None and seed > -1:
generator = torch.manual_seed(seed)
else:
seed = random.randint(100, 1000000)
generator = torch.manual_seed(seed)
if is_shared_ui:
audio_input = cut_audio_to_5_seconds(audio_input)
print(f"Trimmed audio saved at: {audio_input}")
inputs_dict = {
"refimg": image_input,
"audio": audio_input,
"pose": pose_input,
}
print('Pose:', inputs_dict['pose'])
print('Reference:', inputs_dict['refimg'])
print('Audio:', inputs_dict['audio'])
save_name = f"{save_dir}/{timestamp}"
ref_image_pil = Image.open(inputs_dict['refimg']).resize((width, height))
audio_clip = AudioFileClip(inputs_dict['audio'])
length = min(length, int(audio_clip.duration * fps), len(os.listdir(inputs_dict['pose'])))
start_idx = 0
pose_list = []
for index in range(start_idx, start_idx + length):
tgt_musk = np.zeros((width, height, 3)).astype('uint8')
tgt_musk_path = os.path.join(inputs_dict['pose'], "{}.npy".format(index))
detected_pose = np.load(tgt_musk_path, allow_pickle=True).tolist()
imh_new, imw_new, rb, re, cb, ce = detected_pose['draw_pose_params']
im = draw_pose_select_v2(detected_pose, imh_new, imw_new, ref_w=800)
im = np.transpose(np.array(im),(1, 2, 0))
tgt_musk[rb:re,cb:ce,:] = im
tgt_musk_pil = Image.fromarray(np.array(tgt_musk)).convert('RGB')
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=dtype, device=device).permute(2,0,1) / 255.0)
poses_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
audio_clip = AudioFileClip(inputs_dict['audio'])
audio_clip = audio_clip.set_duration(length / fps)
video = pipe(
ref_image_pil,
inputs_dict['audio'],
poses_tensor[:,:,:length,...],
width,
height,
length,
steps,
cfg,
generator=generator,
audio_sample_rate=sample_rate,
context_frames=context_frames,
fps=fps,
context_overlap=context_overlap,
start_idx=start_idx,
).videos
final_length = min(video.shape[2], poses_tensor.shape[2], length)
video_sig = video[:, :, :final_length, :, :]
save_videos_grid(
video_sig,
save_name + "_woa_sig.mp4",
n_rows=1,
fps=fps,
)
video_clip_sig = VideoFileClip(save_name + "_woa_sig.mp4",)
video_clip_sig = video_clip_sig.set_audio(audio_clip)
video_clip_sig.write_videofile(save_name + "_sig.mp4", codec="libx264", audio_codec="aac", threads=2)
video_output = save_name + "_sig.mp4"
seed_text = gr.update(visible=True, value=seed)
return video_output, seed_text
with gr.Blocks() as demo:
gr.Markdown("""
# EchoMimicV2
⚠️ This demonstration is for academic research and experiential use only.
""")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/antgroup/echomimic_v2">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://antgroup.github.io/ai/echomimic_v2/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/abs/2411.10061">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/echomimic-v2?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Group():
image_input = gr.Image(label="Image Input (Auto Scaling)", type="filepath")
audio_input = gr.Audio(label="Audio Input - max 5 seconds on shared UI", type="filepath")
pose_input = gr.Textbox(label="Pose Input (Directory Path)", placeholder="Please enter the directory path for pose data.", value="assets/halfbody_demo/pose/01", interactive=False, visible=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Number(label="Width (multiple of 16, recommended: 768)", value=768)
height = gr.Number(label="Height (multiple of 16, recommended: 768)", value=768)
length = gr.Number(label="Video Length (recommended: 240)", value=240)
with gr.Row():
steps = gr.Number(label="Steps (recommended: 30)", value=20)
sample_rate = gr.Number(label="Sampling Rate (recommended: 16000)", value=16000)
cfg = gr.Number(label="CFG (recommended: 2.5)", value=2.5, step=0.1)
with gr.Row():
fps = gr.Number(label="Frame Rate (recommended: 24)", value=24)
context_frames = gr.Number(label="Context Frames (recommended: 12)", value=12)
context_overlap = gr.Number(label="Context Overlap (recommended: 3)", value=3)
with gr.Row():
quantization_input = gr.Checkbox(label="Int8 Quantization (recommended for users with 12GB VRAM, use audio no longer than 5 seconds)", value=False)
seed = gr.Number(label="Seed (-1 for random)", value=-1)
generate_button = gr.Button("🎬 Generate Video")
with gr.Column():
video_output = gr.Video(label="Output Video")
seed_text = gr.Textbox(label="Seed", interactive=False, visible=False)
gr.Examples(
examples=[
["EMTD_dataset/ref_imgs_by_FLUX/man/0001.png", "assets/halfbody_demo/audio/chinese/echomimicv2_man.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/woman/0077.png", "assets/halfbody_demo/audio/chinese/echomimicv2_woman.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/man/0003.png", "assets/halfbody_demo/audio/chinese/fighting.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/woman/0033.png", "assets/halfbody_demo/audio/chinese/good.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/man/0010.png", "assets/halfbody_demo/audio/chinese/news.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/man/1168.png", "assets/halfbody_demo/audio/chinese/no_smoking.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/woman/0057.png", "assets/halfbody_demo/audio/chinese/ultraman.wav"]
],
inputs=[image_input, audio_input],
label="Preset Characters and Audio",
)
generate_button.click(
generate,
inputs=[image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed],
outputs=[video_output, seed_text],
)
if __name__ == "__main__":
demo.queue()
demo.launch(show_api=False, show_error=True, ssr_mode=False)
|