File size: 11,598 Bytes
2bb21bd
61d75a4
2d61ea6
f6bb466
 
6308d95
768b4f3
16ca3cf
b3c49d3
 
6ccedb0
 
768b4f3
 
 
 
 
 
 
 
 
 
 
 
 
16ca3cf
 
 
 
 
 
 
 
 
 
 
 
 
2bb21bd
93e6bc9
2bb21bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7492c
2bb21bd
 
ef7492c
2bb21bd
 
ef7492c
2bb21bd
ef7492c
2bb21bd
93e6bc9
3300a86
 
93e6bc9
3300a86
 
 
93e6bc9
3300a86
93e6bc9
 
 
2bb21bd
ca0ea4c
c97092f
5d9f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bb21bd
 
5d9f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16ca3cf
 
5d9f0c4
 
 
 
 
 
 
 
 
 
2bb21bd
adb2981
36206e3
5d9f0c4
 
2d61ea6
adb2981
 
 
5d9f0c4
 
 
 
 
 
 
adb2981
d1578ce
 
 
5d9f0c4
d1578ce
 
 
 
5d9f0c4
 
 
 
 
 
 
d1578ce
 
 
 
5d9f0c4
 
 
 
 
 
 
 
 
d1578ce
 
 
5d9f0c4
d1578ce
768b4f3
0137bbd
744331b
768b4f3
744331b
987752b
91b6656
 
987752b
768b4f3
0137bbd
 
 
 
768b4f3
 
 
 
2bb21bd
5d9f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
768b4f3
fd67dba
040374d
 
 
 
5d9f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd67dba
040374d
 
210b78f
040374d
4d300d7
 
 
6dfd871
4d300d7
 
 
 
 
2bb21bd
 
768b4f3
2bb21bd
 
5c91e18
2bb21bd
 
768b4f3
 
57f1b5a
768b4f3
bd2388a
768b4f3
d1578ce
040374d
768b4f3
040374d
cafd44e
768b4f3
fc6db6d
 
86d8a1c
 
65e871f
 
 
 
984d886
65e871f
ee9fbcf
 
06acbc9
2b0e498
86d8a1c
040374d
d684446
8f26f41
040374d
 
0072ba6
 
 
 
 
 
 
 
 
c77ec07
 
040374d
d684446
16ca3cf
d83c819
 
7977880
040374d
 
 
 
 
 
768b4f3
d83c819
16ca3cf
b0d9471
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import gradio as gr
from gradio_client import Client, handle_file
import os
import json
import re
from moviepy import *
import cv2

hf_token = os.environ.get("HF_TKN")

def extract_firstframe(video_in):
    vidcap = cv2.VideoCapture(video_in)
    success,image = vidcap.read()
    count = 0
    while success:
        if count == 0:
            cv2.imwrite("first_frame.jpg", image)     # save first extracted frame as jpg file named first_frame.jpg
        else:
            break   # exit loop after saving first frame
        success,image = vidcap.read()
        print ('Read a new frame: ', success)
        count += 1
    print ("Done extracted first frame!")
    return "first_frame.jpg"

def extract_audio(video_in):
    input_video = video_in
    output_audio = 'audio.wav'
    
    # Open the video file and extract the audio
    video_clip = VideoFileClip(input_video)
    audio_clip = video_clip.audio
    
    # Save the audio as a .wav file
    audio_clip.write_audiofile(output_audio, fps=44100)  # Use 44100 Hz as the sample rate for .wav files  
    print("Audio extraction complete.")

    return 'audio.wav'

def get_caption_from_kosmos(image_in):
    kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/")

    kosmos2_result = kosmos2_client.predict(
        image_in,	# str (filepath or URL to image) in 'Test Image' Image component
        "Detailed",	# str in 'Description Type' Radio component
        fn_index=4
    )

    print(f"KOSMOS2 RETURNS: {kosmos2_result}")

    with open(kosmos2_result[1], 'r') as f:
        data = json.load(f)
    
    reconstructed_sentence = []
    for sublist in data:
        reconstructed_sentence.append(sublist[0])

    full_sentence = ' '.join(reconstructed_sentence)
    #print(full_sentence)

    # Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)...
    pattern = r'^Describe this image in detail:\s*(.*)$'
    # Apply the regex pattern to extract the description text.
    match = re.search(pattern, full_sentence)
    if match:
        description = match.group(1)
        print(description)
    else:
        print("Unable to locate valid description.")

    # Find the last occurrence of "."
    last_period_index = description.rfind('.')

    # Truncate the string up to the last period
    truncated_caption = description[:last_period_index + 1]

    # print(truncated_caption)
    print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
    
    return truncated_caption

def get_caption(image_in):
    
    client = Client("fffiloni/moondream1", hf_token=hf_token)
    result = client.predict(
    		image=handle_file(image_in),
    		question="Describe precisely the image in one sentence.",
    		api_name="/predict"
    )
   
    print(result)
    return result

def get_magnet(prompt):
    amended_prompt = f"{prompt}"
    print(amended_prompt)
    try:
        client = Client("https://fffiloni-magnet.hf.space/")
        result = client.predict(
            "facebook/audio-magnet-medium",	# Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium']  in 'Model' Radio component
            "",	# str  in 'Model Path (custom models)' Textbox component
            amended_prompt,	# str  in 'Input Text' Textbox component
            3,	# float  in 'Temperature' Number component
            0.9,	# float  in 'Top-p' Number component
            10,	# float  in 'Max CFG coefficient' Number component
            1,	# float  in 'Min CFG coefficient' Number component
            20,	# float  in 'Decoding Steps (stage 1)' Number component
            10,	# float  in 'Decoding Steps (stage 2)' Number component
            10,	# float  in 'Decoding Steps (stage 3)' Number component
            10,	# float  in 'Decoding Steps (stage 4)' Number component
            "prod-stride1 (new!)",	# Literal['max-nonoverlap', 'prod-stride1 (new!)']  in 'Span Scoring' Radio component
            api_name="/predict_full"
        )
        print(result)
        return result[1]
    except:
        raise gr.Error("MAGNet space API is not ready, please try again in few minutes ")

def get_audioldm(prompt):
    try:
        client = Client("https://haoheliu-audioldm2-text2audio-text2music.hf.space/")
        result = client.predict(
            prompt,	# str in 'Input text' Textbox component
            "Low quality. Music.",	# str in 'Negative prompt' Textbox component
            10,	# int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
            3.5,	# int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component
            45,	# int | float in 'Seed' Number component
            3,	# int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
            fn_index=1
        )
        print(result)
        audio_result = extract_audio(result)
        return audio_result
    except:
        raise gr.Error("AudioLDM space API is not ready, please try again in few minutes ")

def get_audiogen(prompt):
    try:
        client = Client("https://fffiloni-audiogen.hf.space/")
        result = client.predict(
            prompt,
            10,
            api_name="/infer"
        )
        return result
    except:
        raise gr.Error("AudioGen space API is not ready, please try again in few minutes ")

def get_tango(prompt):
    try:
        client = Client("fffiloni/tango", hf_token=hf_token)
        result = client.predict(
				prompt,	# str representing string value in 'Prompt' Textbox component
				100,	# int | float representing numeric value between 100 and 200 in 'Steps' Slider component
				4,	# int | float representing numeric value between 1 and 10 in 'Guidance Scale' Slider component
				api_name="/predict"
        )
        print(result)
        return result
    except:
        raise gr.Error("Tango space API is not ready, please try again in few minutes ")
    
    

def get_tango2(prompt):
    try:
        client = Client("declare-lab/tango2")
        result = client.predict(
    		prompt,
    		100,
    		4,
    		api_name="/predict"
        )
        print(result)
        return result
    except:
        raise gr.Error("Tango2 space API is not ready, please try again in few minutes ")
    
    

def get_stable_audio_open(prompt):
    try:
        client = Client("fffiloni/Stable-Audio-Open-A10", hf_token=hf_token)
        result = client.predict(
    		prompt=prompt,
    		seconds_total=30,
    		steps=100,
    		cfg_scale=7,
    		api_name="/predict"
        )
        print(result)
        return result
    except:
        raise gr.Error("Stable Audio Open space API is not ready, please try again in few minutes ")
    
    

def blend_vsfx(video_in, audio_result):
    audioClip = AudioFileClip(audio_result)
    print(f"AUD: {audioClip.duration}")
    clip = VideoFileClip(video_in)
    print(f"VID: {clip.duration}")
    if clip.duration < audioClip.duration :
        audioClip = audioClip.subclip((0.0), (clip.duration))
    elif clip.duration > audioClip.duration :
        clip = clip.subclip((0.0), (audioClip.duration))
    final_clip = clip.set_audio(audioClip)
    # Set the output codec
    codec = 'libx264'
    audio_codec = 'aac'
    final_clip.write_videofile('final_video_with_sound.mp4', codec=codec, audio_codec=audio_codec)
    return "final_video_with_sound.mp4"

def infer(video_in, chosen_model):
    image_in = extract_firstframe(video_in)
    caption = get_caption(image_in)
    
    if chosen_model == "MAGNet" :
        audio_result = get_magnet(caption)
    elif chosen_model == "AudioLDM-2" : 
        audio_result = get_audioldm(caption)
    elif chosen_model == "AudioGen" :
        audio_result = get_audiogen(caption)
    elif chosen_model == "Tango" :
        audio_result = get_tango(caption)
    elif chosen_model == "Tango 2" :
        audio_result = get_tango2(caption)
    elif chosen_model == "Stable Audio Open" :
        audio_result = get_stable_audio_open(caption)
    final_res = blend_vsfx(video_in, audio_result)
    return gr.update(value=caption, interactive=True), gr.update(interactive=True), audio_result, final_res
    
    
    

def retry(edited_prompt, video_in, chosen_model):
    image_in = extract_firstframe(video_in)
    caption = edited_prompt
  
    if chosen_model == "MAGNet" :
        audio_result = get_magnet(caption)
    elif chosen_model == "AudioLDM-2" : 
        audio_result = get_audioldm(caption)
    elif chosen_model == "AudioGen" :
        audio_result = get_audiogen(caption)
    elif chosen_model == "Tango" :
        audio_result = get_tango(caption)
    elif chosen_model == "Tango 2" :
        audio_result = get_tango2(caption)
    elif chosen_model == "Stable Audio Open" :
        audio_result = get_stable_audio_open(caption)
    final_res = blend_vsfx(video_in, audio_result)
    return audio_result, final_res
    
    

def refresh():
    return gr.update(value=None, interactive=False), gr.update(interactive=False), gr.update(value=None), gr.update(value=None)

css="""
#col-container{
    margin: 0 auto;
    max-width: 800px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML("""
        <h2 style="text-align: center;">
            Video to SoundFX
        </h2>
        <p style="text-align: center;">
            Get sound effects from a video shot while comparing audio models from image caption.
        </p>
        """)

        with gr.Row():
        
            with gr.Column():
                video_in = gr.Video(sources=["upload"], label="Video input")
                with gr.Row():
                    chosen_model = gr.Dropdown(label="Choose a model", choices=["MAGNet", "AudioLDM-2", "AudioGen", "Tango", "Tango 2", "Stable Audio Open"], value="Tango")
                    submit_btn = gr.Button("Submit", scale=0)
            with gr.Column():
                caption_o = gr.Textbox(label="Scene caption", interactive=False)
                retry_btn = gr.Button("Retry with edited scene caption", interactive=False)
                audio_o = gr.Audio(label="Audio output")
        with gr.Column():
            video_o = gr.Video(label="Video with soundFX")

        gr.Examples(
            examples = [
                ["examples/photoreal-train.mp4", "Tango"], 
                ["examples/train-window.mp4", "Tango"], 
                ["examples/chinese-new-year-dragon.mp4", "Tango"], 
                ["examples/big-sur.mp4", "AudioLDM-2"]
            ],
            fn=infer,
            inputs = [video_in, chosen_model],
            outputs= [caption_o, retry_btn, audio_o, video_o],
            cache_examples=False
        )

    '''
    video_in.change(
        fn = refresh,
        inputs = None,
        outputs = [caption_o, retry_btn, audio_o, video_o],
        queue = False,
        show_progress = False
    )

    video_in.clear(
        fn = refresh,
        inputs = None,
        outputs = [caption_o, retry_btn, audio_o, video_o],
        queue = False,
        show_progress = False
    )
    '''
    
    submit_btn.click(
        fn=infer,
        inputs=[video_in, chosen_model],
        outputs=[caption_o, retry_btn, audio_o, video_o],
    )

    retry_btn.click(
        fn=retry,
        inputs=[caption_o, video_in, chosen_model],
        outputs=[audio_o, video_o],
    )

demo.queue(max_size=10).launch(show_api=False, debug=True, show_error=True)