File size: 8,277 Bytes
b3f324b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# -*- coding: utf-8 -*-
import os
import re
import html
import urllib.parse as ul
import ftfy
import torch
from bs4 import BeautifulSoup
from transformers import T5EncoderModel, AutoTokenizer
from huggingface_hub import hf_hub_download
class T5Embedder:
available_models = ['t5-v1_1-xxl']
bad_punct_regex = re.compile(r'['+'#®•©™&@·º½¾¿¡§~'+'\)'+'\('+'\]'+'\['+'\}'+'\{'+'\|'+'\\'+'\/'+'\*' + r']{1,}') # noqa
def __init__(self, device, dir_or_name='t5-v1_1-xxl', *, cache_dir='./cache_dir', hf_token=None, use_text_preprocessing=True,
t5_model_kwargs=None, torch_dtype=None, model_max_length=120):
self.device = torch.device(device)
self.torch_dtype = torch_dtype or torch.bfloat16
if t5_model_kwargs is None:
t5_model_kwargs = {'low_cpu_mem_usage': True, 'torch_dtype': self.torch_dtype}
t5_model_kwargs['device_map'] = {'shared': self.device, 'encoder': self.device}
self.use_text_preprocessing = use_text_preprocessing
self.hf_token = hf_token
self.cache_dir = cache_dir
self.dir_or_name = dir_or_name
cache_dir = os.path.join(self.cache_dir, 't5-v1_1-xxl')
for filename in ['config.json', 'special_tokens_map.json', 'spiece.model', 'tokenizer_config.json',
'pytorch_model-00001-of-00002.bin', 'pytorch_model-00002-of-00002.bin', 'pytorch_model.bin.index.json']:
hf_hub_download(repo_id='DeepFloyd/t5-v1_1-xxl', filename=filename, cache_dir=cache_dir,
force_filename=filename, token=self.hf_token)
print(cache_dir)
self.tokenizer = AutoTokenizer.from_pretrained(cache_dir)
self.model = T5EncoderModel.from_pretrained(cache_dir, **t5_model_kwargs).eval()
self.model_max_length = model_max_length
def get_text_embeddings(self, texts):
texts = [self.text_preprocessing(text) for text in texts]
text_tokens_and_mask = self.tokenizer(
texts,
max_length=self.model_max_length,
padding='max_length',
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors='pt'
)
text_tokens_and_mask['input_ids'] = text_tokens_and_mask['input_ids']
text_tokens_and_mask['attention_mask'] = text_tokens_and_mask['attention_mask']
with torch.no_grad():
text_encoder_embs = self.model(
input_ids=text_tokens_and_mask['input_ids'].to(self.device),
attention_mask=text_tokens_and_mask['attention_mask'].to(self.device),
)['last_hidden_state'].detach()
return text_encoder_embs, text_tokens_and_mask['attention_mask'].to(self.device)
def text_preprocessing(self, text):
if self.use_text_preprocessing:
# The exact text cleaning as was in the training stage:
text = self.clean_caption(text)
text = self.clean_caption(text)
return text
else:
return text.lower().strip()
@staticmethod
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def clean_caption(self, caption):
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub('<person>', 'person', caption)
# urls:
caption = re.sub(
r'\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))', # noqa
'', caption) # regex for urls
caption = re.sub(
r'\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))', # noqa
'', caption) # regex for urls
# html:
caption = BeautifulSoup(caption, features='html.parser').text
# @<nickname>
caption = re.sub(r'@[\w\d]+\b', '', caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r'[\u31c0-\u31ef]+', '', caption)
caption = re.sub(r'[\u31f0-\u31ff]+', '', caption)
caption = re.sub(r'[\u3200-\u32ff]+', '', caption)
caption = re.sub(r'[\u3300-\u33ff]+', '', caption)
caption = re.sub(r'[\u3400-\u4dbf]+', '', caption)
caption = re.sub(r'[\u4dc0-\u4dff]+', '', caption)
caption = re.sub(r'[\u4e00-\u9fff]+', '', caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r'[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+', # noqa
'-', caption)
# кавычки к одному стандарту
caption = re.sub(r'[`´«»“”¨]', '"', caption)
caption = re.sub(r'[‘’]', "'", caption)
# "
caption = re.sub(r'"?', '', caption)
# &
caption = re.sub(r'&', '', caption)
# ip adresses:
caption = re.sub(r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', ' ', caption)
# article ids:
caption = re.sub(r'\d:\d\d\s+$', '', caption)
# \n
caption = re.sub(r'\\n', ' ', caption)
# "#123"
caption = re.sub(r'#\d{1,3}\b', '', caption)
# "#12345.."
caption = re.sub(r'#\d{5,}\b', '', caption)
# "123456.."
caption = re.sub(r'\b\d{6,}\b', '', caption)
# filenames:
caption = re.sub(r'[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption)
#
caption = re.sub(r'[\"\']{2,}', r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r'[\.]{2,}', r' ', caption) # """AUSVERKAUFT"""
caption = re.sub(self.bad_punct_regex, r' ', caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r'\s+\.\s+', r' ', caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r'(?:\-|\_)')
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, ' ', caption)
caption = self.basic_clean(caption)
caption = re.sub(r'\b[a-zA-Z]{1,3}\d{3,15}\b', '', caption) # jc6640
caption = re.sub(r'\b[a-zA-Z]+\d+[a-zA-Z]+\b', '', caption) # jc6640vc
caption = re.sub(r'\b\d+[a-zA-Z]+\d+\b', '', caption) # 6640vc231
caption = re.sub(r'(worldwide\s+)?(free\s+)?shipping', '', caption)
caption = re.sub(r'(free\s)?download(\sfree)?', '', caption)
caption = re.sub(r'\bclick\b\s(?:for|on)\s\w+', '', caption)
caption = re.sub(r'\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?', '', caption)
caption = re.sub(r'\bpage\s+\d+\b', '', caption)
caption = re.sub(r'\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b', r' ', caption) # j2d1a2a...
caption = re.sub(r'\b\d+\.?\d*[xх×]\d+\.?\d*\b', '', caption)
caption = re.sub(r'\b\s+\:\s+', r': ', caption)
caption = re.sub(r'(\D[,\./])\b', r'\1 ', caption)
caption = re.sub(r'\s+', ' ', caption)
caption.strip()
caption = re.sub(r'^[\"\']([\w\W]+)[\"\']$', r'\1', caption)
caption = re.sub(r'^[\'\_,\-\:;]', r'', caption)
caption = re.sub(r'[\'\_,\-\:\-\+]$', r'', caption)
caption = re.sub(r'^\.\S+$', '', caption)
return caption.strip()
if __name__ == '__main__':
t5 = T5Embedder(device="cuda", cache_dir='./cache_dir', torch_dtype=torch.float)
device = t5.device
prompts = ['I am a test caption', 'Test twice']
with torch.no_grad():
caption_embs, emb_masks = t5.get_text_embeddings(prompts)
emb_dict = {
'caption_feature': caption_embs.float().cpu().data.numpy(),
'attention_mask': emb_masks.cpu().data.numpy(),
}
import ipdb;ipdb.set_trace()
print() |