Spaces:
Sleeping
Sleeping
Create hf_gradio_app.py
Browse files- hf_gradio_app.py +178 -0
hf_gradio_app.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, random, time
|
2 |
+
from huggingface_hub import snapshot_download
|
3 |
+
|
4 |
+
# Download models
|
5 |
+
os.makedirs("checkpoints", exist_ok=True)
|
6 |
+
|
7 |
+
# List of subdirectories to create inside "checkpoints"
|
8 |
+
subfolders = [
|
9 |
+
"vae",
|
10 |
+
"wav2vec2",
|
11 |
+
"emotion2vec_plus_large"
|
12 |
+
]
|
13 |
+
|
14 |
+
# Create each subdirectory
|
15 |
+
for subfolder in subfolders:
|
16 |
+
os.makedirs(os.path.join("checkpoints", subfolder), exist_ok=True)
|
17 |
+
|
18 |
+
snapshot_download(
|
19 |
+
repo_id = "memoavatar/memo",
|
20 |
+
local_dir = "./checkpoints"
|
21 |
+
)
|
22 |
+
|
23 |
+
snapshot_download(
|
24 |
+
repo_id = "stabilityai/sd-vae-ft-mse",
|
25 |
+
local_dir = "./checkpoints/vae"
|
26 |
+
)
|
27 |
+
|
28 |
+
snapshot_download(
|
29 |
+
repo_id = "facebook/wav2vec2-base-960h",
|
30 |
+
local_dir = "./checkpoints/wav2vec2"
|
31 |
+
)
|
32 |
+
|
33 |
+
snapshot_download(
|
34 |
+
repo_id = "emotion2vec/emotion2vec_plus_large",
|
35 |
+
local_dir = "./checkpoints/emotion2vec_plus_large"
|
36 |
+
)
|
37 |
+
|
38 |
+
import torch
|
39 |
+
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
|
40 |
+
from tqdm import tqdm
|
41 |
+
|
42 |
+
from memo.models.audio_proj import AudioProjModel
|
43 |
+
from memo.models.image_proj import ImageProjModel
|
44 |
+
from memo.models.unet_2d_condition import UNet2DConditionModel
|
45 |
+
from memo.models.unet_3d import UNet3DConditionModel
|
46 |
+
from memo.pipelines.video_pipeline import VideoPipeline
|
47 |
+
from memo.utils.audio_utils import extract_audio_emotion_labels, preprocess_audio, resample_audio
|
48 |
+
from memo.utils.vision_utils import preprocess_image, tensor_to_video
|
49 |
+
|
50 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
51 |
+
weight_dtype = torch.bfloat16
|
52 |
+
|
53 |
+
with torch.inference_mode():
|
54 |
+
vae = AutoencoderKL.from_pretrained("./checkpoints/vae").to(device=device, dtype=weight_dtype)
|
55 |
+
reference_net = UNet2DConditionModel.from_pretrained("./checkpoints", subfolder="reference_net", use_safetensors=True)
|
56 |
+
diffusion_net = UNet3DConditionModel.from_pretrained("./checkpoints", subfolder="diffusion_net", use_safetensors=True)
|
57 |
+
image_proj = ImageProjModel.from_pretrained("./checkpoints", subfolder="image_proj", use_safetensors=True)
|
58 |
+
audio_proj = AudioProjModel.from_pretrained("./checkpoints", subfolder="audio_proj", use_safetensors=True)
|
59 |
+
|
60 |
+
vae.requires_grad_(False).eval()
|
61 |
+
reference_net.requires_grad_(False).eval()
|
62 |
+
diffusion_net.requires_grad_(False).eval()
|
63 |
+
image_proj.requires_grad_(False).eval()
|
64 |
+
audio_proj.requires_grad_(False).eval()
|
65 |
+
reference_net.enable_xformers_memory_efficient_attention()
|
66 |
+
diffusion_net.enable_xformers_memory_efficient_attention()
|
67 |
+
|
68 |
+
noise_scheduler = FlowMatchEulerDiscreteScheduler()
|
69 |
+
pipeline = VideoPipeline(vae=vae, reference_net=reference_net, diffusion_net=diffusion_net, scheduler=noise_scheduler, image_proj=image_proj)
|
70 |
+
pipeline.to(device=device, dtype=weight_dtype)
|
71 |
+
|
72 |
+
@torch.inference_mode()
|
73 |
+
def generate(input_video, input_audio, seed):
|
74 |
+
resolution = 512
|
75 |
+
num_generated_frames_per_clip = 16
|
76 |
+
fps = 30
|
77 |
+
num_init_past_frames = 2
|
78 |
+
num_past_frames = 16
|
79 |
+
inference_steps = 20
|
80 |
+
cfg_scale = 3.5
|
81 |
+
|
82 |
+
if seed == 0:
|
83 |
+
random.seed(int(time.time()))
|
84 |
+
seed = random.randint(0, 18446744073709551615)
|
85 |
+
|
86 |
+
generator = torch.manual_seed(seed)
|
87 |
+
img_size = (resolution, resolution)
|
88 |
+
pixel_values, face_emb = preprocess_image(face_analysis_model="./checkpoints/misc/face_analysis", image_path=input_video, image_size=resolution)
|
89 |
+
|
90 |
+
output_dir = "./outputs"
|
91 |
+
os.makedirs(output_dir, exist_ok=True)
|
92 |
+
cache_dir = os.path.join(output_dir, "audio_preprocess")
|
93 |
+
os.makedirs(cache_dir, exist_ok=True)
|
94 |
+
input_audio = resample_audio(input_audio, os.path.join(cache_dir, f"{os.path.basename(input_audio).split('.')[0]}-16k.wav"))
|
95 |
+
|
96 |
+
audio_emb, audio_length = preprocess_audio(
|
97 |
+
wav_path=input_audio,
|
98 |
+
num_generated_frames_per_clip=num_generated_frames_per_clip,
|
99 |
+
fps=fps,
|
100 |
+
wav2vec_model="./checkpoints/wav2vec2",
|
101 |
+
vocal_separator_model="./checkpoints/misc/vocal_separator/Kim_Vocal_2.onnx",
|
102 |
+
cache_dir=cache_dir,
|
103 |
+
device=device,
|
104 |
+
)
|
105 |
+
audio_emotion, num_emotion_classes = extract_audio_emotion_labels(
|
106 |
+
model="./checkpoints",
|
107 |
+
wav_path=input_audio,
|
108 |
+
emotion2vec_model="./checkpoints/emotion2vec_plus_large",
|
109 |
+
audio_length=audio_length,
|
110 |
+
device=device,
|
111 |
+
)
|
112 |
+
|
113 |
+
video_frames = []
|
114 |
+
num_clips = audio_emb.shape[0] // num_generated_frames_per_clip
|
115 |
+
for t in tqdm(range(num_clips), desc="Generating video clips"):
|
116 |
+
if len(video_frames) == 0:
|
117 |
+
past_frames = pixel_values.repeat(num_init_past_frames, 1, 1, 1)
|
118 |
+
past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device)
|
119 |
+
pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0)
|
120 |
+
else:
|
121 |
+
past_frames = video_frames[-1][0]
|
122 |
+
past_frames = past_frames.permute(1, 0, 2, 3)
|
123 |
+
past_frames = past_frames[0 - num_past_frames :]
|
124 |
+
past_frames = past_frames * 2.0 - 1.0
|
125 |
+
past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device)
|
126 |
+
pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0)
|
127 |
+
|
128 |
+
pixel_values_ref_img = pixel_values_ref_img.unsqueeze(0)
|
129 |
+
audio_tensor = (audio_emb[t * num_generated_frames_per_clip : min((t + 1) * num_generated_frames_per_clip, audio_emb.shape[0])].unsqueeze(0).to(device=audio_proj.device, dtype=audio_proj.dtype))
|
130 |
+
audio_tensor = audio_proj(audio_tensor)
|
131 |
+
audio_emotion_tensor = audio_emotion[t * num_generated_frames_per_clip : min((t + 1) * num_generated_frames_per_clip, audio_emb.shape[0])]
|
132 |
+
|
133 |
+
pipeline_output = pipeline(
|
134 |
+
ref_image=pixel_values_ref_img,
|
135 |
+
audio_tensor=audio_tensor,
|
136 |
+
audio_emotion=audio_emotion_tensor,
|
137 |
+
emotion_class_num=num_emotion_classes,
|
138 |
+
face_emb=face_emb,
|
139 |
+
width=img_size[0],
|
140 |
+
height=img_size[1],
|
141 |
+
video_length=num_generated_frames_per_clip,
|
142 |
+
num_inference_steps=inference_steps,
|
143 |
+
guidance_scale=cfg_scale,
|
144 |
+
generator=generator,
|
145 |
+
)
|
146 |
+
video_frames.append(pipeline_output.videos)
|
147 |
+
|
148 |
+
video_frames = torch.cat(video_frames, dim=2)
|
149 |
+
video_frames = video_frames.squeeze(0)
|
150 |
+
video_frames = video_frames[:, :audio_length]
|
151 |
+
|
152 |
+
video_path = f"/content/memo-{seed}-tost.mp4"
|
153 |
+
tensor_to_video(video_frames, video_path, input_audio, fps=fps)
|
154 |
+
|
155 |
+
return video_path
|
156 |
+
|
157 |
+
import gradio as gr
|
158 |
+
|
159 |
+
with gr.Blocks(analytics_enabled=False) as demo:
|
160 |
+
with gr.Column():
|
161 |
+
gr.Markdown("# MEMO")
|
162 |
+
|
163 |
+
with gr.Row():
|
164 |
+
with gr.Column():
|
165 |
+
input_video = gr.Image(label="Upload Input Image", type="filepath")
|
166 |
+
input_audio = gr.Audio(label="Upload Input Audio", type="filepath")
|
167 |
+
seed = gr.Number(label="Seed (0 for Random)", value=0, precision=0)
|
168 |
+
with gr.Column():
|
169 |
+
video_output = gr.Video(label="Generated Video")
|
170 |
+
generate_button = gr.Button("Generate")
|
171 |
+
|
172 |
+
generate_button.click(
|
173 |
+
fn=generate,
|
174 |
+
inputs=[input_video, input_audio, seed],
|
175 |
+
outputs=[video_output],
|
176 |
+
)
|
177 |
+
|
178 |
+
demo.queue().launch(share=False, show_api=False, show_error=True)
|