Spaces:
Sleeping
Sleeping
import logging | |
import math | |
import os | |
import subprocess | |
from io import BytesIO | |
import librosa | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torchaudio | |
from audio_separator.separator import Separator | |
from einops import rearrange | |
from funasr.download.download_from_hub import download_model | |
from funasr.models.emotion2vec.model import Emotion2vec | |
from transformers import Wav2Vec2FeatureExtractor | |
from memo.models.emotion_classifier import AudioEmotionClassifierModel | |
from memo.models.wav2vec import Wav2VecModel | |
logger = logging.getLogger(__name__) | |
def resample_audio(input_audio_file: str, output_audio_file: str, sample_rate: int = 16000): | |
p = subprocess.Popen( | |
[ | |
"ffmpeg", | |
"-y", | |
"-v", | |
"error", | |
"-i", | |
input_audio_file, | |
"-ar", | |
str(sample_rate), | |
output_audio_file, | |
] | |
) | |
ret = p.wait() | |
assert ret == 0, f"Resample audio failed! Input: {input_audio_file}, Output: {output_audio_file}" | |
return output_audio_file | |
def preprocess_audio( | |
wav_path: str, | |
fps: int, | |
wav2vec_model: str, | |
vocal_separator_model: str = None, | |
cache_dir: str = "", | |
device: str = "cuda", | |
sample_rate: int = 16000, | |
num_generated_frames_per_clip: int = -1, | |
): | |
""" | |
Preprocess the audio file and extract audio embeddings. | |
Args: | |
wav_path (str): Path to the input audio file. | |
fps (int): Frames per second for the audio processing. | |
wav2vec_model (str): Path to the pretrained Wav2Vec model. | |
vocal_separator_model (str, optional): Path to the vocal separator model. Defaults to None. | |
cache_dir (str, optional): Directory for cached files. Defaults to "". | |
device (str, optional): Device to use ('cuda' or 'cpu'). Defaults to "cuda". | |
sample_rate (int, optional): Sampling rate for audio processing. Defaults to 16000. | |
num_generated_frames_per_clip (int, optional): Number of generated frames per clip for padding. Defaults to -1. | |
Returns: | |
tuple: A tuple containing: | |
- audio_emb (torch.Tensor): The processed audio embeddings. | |
- audio_length (int): The length of the audio in frames. | |
""" | |
# Initialize Wav2Vec model | |
audio_encoder = Wav2VecModel.from_pretrained(wav2vec_model).to(device=device) | |
audio_encoder.feature_extractor._freeze_parameters() | |
# Initialize Wav2Vec feature extractor | |
wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(wav2vec_model) | |
# Initialize vocal separator if provided | |
vocal_separator = None | |
if vocal_separator_model is not None: | |
os.makedirs(cache_dir, exist_ok=True) | |
vocal_separator = Separator( | |
output_dir=cache_dir, | |
output_single_stem="vocals", | |
model_file_dir=os.path.dirname(vocal_separator_model), | |
) | |
vocal_separator.load_model(os.path.basename(vocal_separator_model)) | |
#vocal_separator.load_model("UVR-MDX-NET-Inst_HQ_3.onnx") | |
assert vocal_separator.model_instance is not None, "Failed to load audio separation model." | |
# Perform vocal separation if applicable | |
if vocal_separator is not None: | |
outputs = vocal_separator.separate(wav_path) | |
assert len(outputs) > 0, "Audio separation failed." | |
vocal_audio_file = outputs[0] | |
vocal_audio_name, _ = os.path.splitext(vocal_audio_file) | |
vocal_audio_file = os.path.join(vocal_separator.output_dir, vocal_audio_file) | |
vocal_audio_file = resample_audio( | |
vocal_audio_file, | |
os.path.join(vocal_separator.output_dir, f"{vocal_audio_name}-16k.wav"), | |
sample_rate, | |
) | |
else: | |
vocal_audio_file = wav_path | |
# Load audio and extract Wav2Vec features | |
speech_array, sampling_rate = librosa.load(vocal_audio_file, sr=sample_rate) | |
audio_feature = np.squeeze(wav2vec_feature_extractor(speech_array, sampling_rate=sampling_rate).input_values) | |
audio_length = math.ceil(len(audio_feature) / sample_rate * fps) | |
audio_feature = torch.from_numpy(audio_feature).float().to(device=device) | |
# Pad audio features to match the required length | |
if num_generated_frames_per_clip > 0 and audio_length % num_generated_frames_per_clip != 0: | |
audio_feature = torch.nn.functional.pad( | |
audio_feature, | |
( | |
0, | |
(num_generated_frames_per_clip - audio_length % num_generated_frames_per_clip) * (sample_rate // fps), | |
), | |
"constant", | |
0.0, | |
) | |
audio_length += num_generated_frames_per_clip - audio_length % num_generated_frames_per_clip | |
audio_feature = audio_feature.unsqueeze(0) | |
# Extract audio embeddings | |
with torch.no_grad(): | |
embeddings = audio_encoder(audio_feature, seq_len=audio_length, output_hidden_states=True) | |
assert len(embeddings) > 0, "Failed to extract audio embeddings." | |
audio_emb = torch.stack(embeddings.hidden_states[1:], dim=1).squeeze(0) | |
audio_emb = rearrange(audio_emb, "b s d -> s b d") | |
# Concatenate embeddings with surrounding frames | |
audio_emb = audio_emb.cpu().detach() | |
concatenated_tensors = [] | |
for i in range(audio_emb.shape[0]): | |
vectors_to_concat = [audio_emb[max(min(i + j, audio_emb.shape[0] - 1), 0)] for j in range(-2, 3)] | |
concatenated_tensors.append(torch.stack(vectors_to_concat, dim=0)) | |
audio_emb = torch.stack(concatenated_tensors, dim=0) | |
if vocal_separator is not None: | |
del vocal_separator | |
del audio_encoder | |
return audio_emb, audio_length | |
def extract_audio_emotion_labels( | |
model: str, | |
wav_path: str, | |
emotion2vec_model: str, | |
audio_length: int, | |
sample_rate: int = 16000, | |
device: str = "cuda", | |
): | |
""" | |
Extract audio emotion labels from an audio file. | |
Args: | |
model (str): Path to the MEMO model. | |
wav_path (str): Path to the input audio file. | |
emotion2vec_model (str): Path to the Emotion2vec model. | |
audio_length (int): Target length for interpolated emotion labels. | |
sample_rate (int, optional): Sample rate of the input audio. Default is 16000. | |
device (str, optional): Device to use ('cuda' or 'cpu'). Default is "cuda". | |
Returns: | |
torch.Tensor: Processed emotion labels with shape matching the target audio length. | |
""" | |
# Load models | |
logger.info("Downloading emotion2vec models from modelscope") | |
kwargs = download_model(model=emotion2vec_model) | |
kwargs["tokenizer"] = None | |
kwargs["input_size"] = None | |
kwargs["frontend"] = None | |
emotion_model = Emotion2vec(**kwargs, vocab_size=-1).to(device) | |
init_param = kwargs.get("init_param", None) | |
load_emotion2vec_model( | |
model=emotion_model, | |
path=init_param, | |
ignore_init_mismatch=kwargs.get("ignore_init_mismatch", True), | |
oss_bucket=kwargs.get("oss_bucket", None), | |
scope_map=kwargs.get("scope_map", []), | |
) | |
emotion_model.eval() | |
classifier = AudioEmotionClassifierModel.from_pretrained( | |
model, | |
subfolder="misc/audio_emotion_classifier", | |
use_safetensors=True, | |
).to(device=device) | |
classifier.eval() | |
# Load audio | |
wav, sr = torchaudio.load(wav_path) | |
if sr != sample_rate: | |
wav = torchaudio.functional.resample(wav, sr, sample_rate) | |
wav = wav.view(-1) if wav.dim() == 1 else wav[0].view(-1) | |
emotion_labels = torch.full_like(wav, -1, dtype=torch.int32) | |
def extract_emotion(x): | |
""" | |
Extract emotion for a given audio segment. | |
""" | |
x = x.to(device=device) | |
x = F.layer_norm(x, x.shape).view(1, -1) | |
feats = emotion_model.extract_features(x) | |
x = feats["x"].mean(dim=1) # average across frames | |
x = classifier(x) | |
x = torch.softmax(x, dim=-1) | |
return torch.argmax(x, dim=-1) | |
# Process start, middle, and end segments | |
start_label = extract_emotion(wav[: sample_rate * 2]).item() | |
emotion_labels[:sample_rate] = start_label | |
for i in range(sample_rate, len(wav) - sample_rate, sample_rate): | |
mid_wav = wav[i - sample_rate : i - sample_rate + sample_rate * 3] | |
mid_label = extract_emotion(mid_wav).item() | |
emotion_labels[i : i + sample_rate] = mid_label | |
end_label = extract_emotion(wav[-sample_rate * 2 :]).item() | |
emotion_labels[-sample_rate:] = end_label | |
# Interpolate to match the target audio length | |
emotion_labels = emotion_labels.unsqueeze(0).unsqueeze(0).float() | |
emotion_labels = F.interpolate(emotion_labels, size=audio_length, mode="nearest").squeeze(0).squeeze(0).int() | |
num_emotion_classes = classifier.num_emotion_classes | |
del emotion_model | |
del classifier | |
return emotion_labels, num_emotion_classes | |
def load_emotion2vec_model( | |
path: str, | |
model: torch.nn.Module, | |
ignore_init_mismatch: bool = True, | |
map_location: str = "cpu", | |
oss_bucket=None, | |
scope_map=[], | |
): | |
obj = model | |
dst_state = obj.state_dict() | |
logger.debug(f"Emotion2vec checkpoint: {path}") | |
if oss_bucket is None: | |
src_state = torch.load(path, map_location=map_location) | |
else: | |
buffer = BytesIO(oss_bucket.get_object(path).read()) | |
src_state = torch.load(buffer, map_location=map_location) | |
src_state = src_state["state_dict"] if "state_dict" in src_state else src_state | |
src_state = src_state["model_state_dict"] if "model_state_dict" in src_state else src_state | |
src_state = src_state["model"] if "model" in src_state else src_state | |
if isinstance(scope_map, str): | |
scope_map = scope_map.split(",") | |
scope_map += ["module.", "None"] | |
for k in dst_state.keys(): | |
k_src = k | |
if scope_map is not None: | |
src_prefix = "" | |
dst_prefix = "" | |
for i in range(0, len(scope_map), 2): | |
src_prefix = scope_map[i] if scope_map[i].lower() != "none" else "" | |
dst_prefix = scope_map[i + 1] if scope_map[i + 1].lower() != "none" else "" | |
if dst_prefix == "" and (src_prefix + k) in src_state.keys(): | |
k_src = src_prefix + k | |
if not k_src.startswith("module."): | |
logger.debug(f"init param, map: {k} from {k_src} in ckpt") | |
elif k.startswith(dst_prefix) and k.replace(dst_prefix, src_prefix, 1) in src_state.keys(): | |
k_src = k.replace(dst_prefix, src_prefix, 1) | |
if not k_src.startswith("module."): | |
logger.debug(f"init param, map: {k} from {k_src} in ckpt") | |
if k_src in src_state.keys(): | |
if ignore_init_mismatch and dst_state[k].shape != src_state[k_src].shape: | |
logger.debug( | |
f"ignore_init_mismatch:{ignore_init_mismatch}, dst: {k, dst_state[k].shape}, src: {k_src, src_state[k_src].shape}" | |
) | |
else: | |
dst_state[k] = src_state[k_src] | |
else: | |
logger.debug(f"Warning, miss key in ckpt: {k}, mapped: {k_src}") | |
obj.load_state_dict(dst_state, strict=True) | |