Spaces:
Runtime error
Runtime error
import inspect | |
from dataclasses import dataclass | |
from typing import Callable, List, Optional, Union | |
import numpy as np | |
import torch | |
from diffusers import ( | |
DDIMScheduler, | |
DiffusionPipeline, | |
DPMSolverMultistepScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
LMSDiscreteScheduler, | |
PNDMScheduler, | |
) | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.utils import BaseOutput | |
from diffusers.utils.torch_utils import randn_tensor | |
from einops import rearrange | |
class VideoPipelineOutput(BaseOutput): | |
videos: Union[torch.Tensor, np.ndarray] | |
class VideoPipeline(DiffusionPipeline): | |
def __init__( | |
self, | |
vae, | |
reference_net, | |
diffusion_net, | |
image_proj, | |
scheduler: Union[ | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
], | |
) -> None: | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
reference_net=reference_net, | |
diffusion_net=diffusion_net, | |
scheduler=scheduler, | |
image_proj=image_proj, | |
) | |
self.vae_scale_factor: int = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.ref_image_processor = VaeImageProcessor( | |
vae_scale_factor=self.vae_scale_factor, | |
do_convert_rgb=True, | |
) | |
def _execution_device(self): | |
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
return self.device | |
for module in self.unet.modules(): | |
if ( | |
hasattr(module, "_hf_hook") | |
and hasattr(module._hf_hook, "execution_device") | |
and module._hf_hook.execution_device is not None | |
): | |
return torch.device(module._hf_hook.execution_device) | |
return self.device | |
def prepare_latents( | |
self, | |
batch_size: int, # Number of videos to generate in parallel | |
num_channels_latents: int, # Number of channels in the latents | |
width: int, # Width of the video frame | |
height: int, # Height of the video frame | |
video_length: int, # Length of the video in frames | |
dtype: torch.dtype, # Data type of the latents | |
device: torch.device, # Device to store the latents on | |
generator: Optional[torch.Generator] = None, # Random number generator for reproducibility | |
latents: Optional[torch.Tensor] = None, # Pre-generated latents (optional) | |
): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
video_length, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
if hasattr(self.scheduler, "init_noise_sigma"): | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def decode_latents(self, latents): | |
video_length = latents.shape[2] | |
latents = 1 / 0.18215 * latents | |
latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
video = [] | |
for frame_idx in range(latents.shape[0]): | |
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample) | |
video = torch.cat(video) | |
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
video = (video / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
video = video.cpu().float().numpy() | |
return video | |
def __call__( | |
self, | |
ref_image, | |
face_emb, | |
audio_tensor, | |
width, | |
height, | |
video_length, | |
num_inference_steps, | |
guidance_scale, | |
num_images_per_prompt=1, | |
eta: float = 0.0, | |
audio_emotion=None, | |
emotion_class_num=None, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
output_type: Optional[str] = "tensor", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
): | |
# Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
device = self._execution_device | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
batch_size = 1 | |
# prepare clip image embeddings | |
clip_image_embeds = face_emb | |
clip_image_embeds = clip_image_embeds.to(self.image_proj.device, self.image_proj.dtype) | |
encoder_hidden_states = self.image_proj(clip_image_embeds) | |
uncond_encoder_hidden_states = self.image_proj(torch.zeros_like(clip_image_embeds)) | |
if do_classifier_free_guidance: | |
encoder_hidden_states = torch.cat([uncond_encoder_hidden_states, encoder_hidden_states], dim=0) | |
num_channels_latents = self.diffusion_net.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
width, | |
height, | |
video_length, | |
clip_image_embeds.dtype, | |
device, | |
generator, | |
) | |
# Prepare extra step kwargs. | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# Prepare ref image latents | |
ref_image_tensor = rearrange(ref_image, "b f c h w -> (b f) c h w") | |
ref_image_tensor = self.ref_image_processor.preprocess( | |
ref_image_tensor, height=height, width=width | |
) # (bs, c, width, height) | |
ref_image_tensor = ref_image_tensor.to(dtype=self.vae.dtype, device=self.vae.device) | |
# To save memory on GPUs like RTX 4090, we encode each frame separately | |
# ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean | |
ref_image_latents = [] | |
for frame_idx in range(ref_image_tensor.shape[0]): | |
ref_image_latents.append(self.vae.encode(ref_image_tensor[frame_idx : frame_idx + 1]).latent_dist.mean) | |
ref_image_latents = torch.cat(ref_image_latents, dim=0) | |
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w) | |
if do_classifier_free_guidance: | |
uncond_audio_tensor = torch.zeros_like(audio_tensor) | |
audio_tensor = torch.cat([uncond_audio_tensor, audio_tensor], dim=0) | |
audio_tensor = audio_tensor.to(dtype=self.diffusion_net.dtype, device=self.diffusion_net.device) | |
# denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i in range(len(timesteps)): | |
t = timesteps[i] | |
# Forward reference image | |
if i == 0: | |
ref_features = self.reference_net( | |
ref_image_latents.repeat((2 if do_classifier_free_guidance else 1), 1, 1, 1), | |
torch.zeros_like(t), | |
encoder_hidden_states=encoder_hidden_states, | |
return_dict=False, | |
) | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
if hasattr(self.scheduler, "scale_model_input"): | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
audio_emotion = torch.tensor(torch.mode(audio_emotion).values.item()).to( | |
dtype=torch.int, device=self.diffusion_net.device | |
) | |
if do_classifier_free_guidance: | |
uncond_audio_emotion = torch.full_like(audio_emotion, emotion_class_num) | |
audio_emotion = torch.cat( | |
[uncond_audio_emotion.unsqueeze(0), audio_emotion.unsqueeze(0)], | |
dim=0, | |
) | |
uc_mask = ( | |
torch.Tensor( | |
[1] * batch_size * num_images_per_prompt * 16 | |
+ [0] * batch_size * num_images_per_prompt * 16 | |
) | |
.to(device) | |
.bool() | |
) | |
else: | |
uc_mask = None | |
noise_pred = self.diffusion_net( | |
latent_model_input, | |
ref_features, | |
t, | |
encoder_hidden_states=encoder_hidden_states, | |
audio_embedding=audio_tensor, | |
audio_emotion=audio_emotion, | |
uc_mask=uc_mask, | |
).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0: | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
# Post-processing | |
images = self.decode_latents(latents) # (b, c, f, h, w) | |
# Convert to tensor | |
if output_type == "tensor": | |
images = torch.from_numpy(images) | |
if not return_dict: | |
return images | |
return VideoPipelineOutput(videos=images) | |