Spaces:
Sleeping
Sleeping
from typing import Any, Dict, Optional | |
import torch | |
from diffusers.models.attention import ( | |
AdaLayerNorm, | |
AdaLayerNormZero, | |
Attention, | |
FeedForward, | |
) | |
from diffusers.models.embeddings import SinusoidalPositionalEmbedding | |
from einops import rearrange | |
from torch import nn | |
from memo.models.attention_processor import Attention as CustomAttention | |
from memo.models.attention_processor import JointAttnProcessor2_0 | |
class GatedSelfAttentionDense(nn.Module): | |
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): | |
super().__init__() | |
self.linear = nn.Linear(context_dim, query_dim) | |
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
self.ff = FeedForward(query_dim, activation_fn="geglu") | |
self.norm1 = nn.LayerNorm(query_dim) | |
self.norm2 = nn.LayerNorm(query_dim) | |
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) | |
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) | |
self.enabled = True | |
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: | |
if not self.enabled: | |
return x | |
n_visual = x.shape[1] | |
objs = self.linear(objs) | |
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] | |
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) | |
return x | |
class BasicTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single' | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
is_final_block: bool = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.is_final_block = is_final_block | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
if not is_final_block: | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=(cross_attention_dim if not double_self_attention else None), | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
) | |
# 4. Fuser | |
if attention_type in {"gated", "gated-text-image"}: # Updated line | |
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
# 5. Scale-shift for PixArt-Alpha. | |
if self.use_ada_layer_norm_single: | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
) -> torch.FloatTensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
gate_msa = None | |
scale_mlp = None | |
shift_mlp = None | |
gate_mlp = None | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.use_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
norm_hidden_states = norm_hidden_states.squeeze(1) | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
# 1. Retrieve lora scale. | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
# 2. Prepare GLIGEN inputs | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
ref_feature = norm_hidden_states | |
if self.is_final_block: | |
return None, ref_feature | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=(encoder_hidden_states if self.only_cross_attention else None), | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.use_ada_layer_norm_single: | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 2.5 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero or self.use_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
norm_hidden_states = hidden_states | |
else: | |
raise ValueError("Incorrect norm") | |
if self.pos_embed is not None and self.use_ada_layer_norm_single is False: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states.repeat( | |
norm_hidden_states.shape[0] // encoder_hidden_states.shape[0], 1, 1 | |
), | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.use_ada_layer_norm_single: | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states, ref_feature | |
class TemporalBasicTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
unet_use_cross_frame_attention=None, | |
unet_use_temporal_attention=None, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention | |
self.unet_use_temporal_attention = unet_use_temporal_attention | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
# Cross-Attn | |
if cross_attention_dim is not None: | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
else: | |
self.attn2 = None | |
if cross_attention_dim is not None: | |
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
else: | |
self.norm2 = None | |
# Feed-forward | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
self.norm3 = nn.LayerNorm(dim) | |
self.use_ada_layer_norm_zero = False | |
# Temp-Attn | |
if unet_use_temporal_attention is None: | |
unet_use_temporal_attention = False | |
if unet_use_temporal_attention: | |
self.attn_temp = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
nn.init.zeros_(self.attn_temp.to_out[0].weight.data) | |
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
ref_img_feature: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
video_length=None, | |
uc_mask=None, | |
): | |
norm_hidden_states = self.norm1(hidden_states) | |
# 1. Self-Attention | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
ref_img_feature = ref_img_feature.repeat(video_length, 1, 1) | |
modify_norm_hidden_states = torch.cat((norm_hidden_states, ref_img_feature), dim=1).to( | |
dtype=norm_hidden_states.dtype | |
) | |
hidden_states_uc = ( | |
self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=modify_norm_hidden_states, | |
attention_mask=attention_mask, | |
) | |
+ hidden_states | |
) | |
if uc_mask is not None: | |
hidden_states_c = hidden_states_uc.clone() | |
_uc_mask = uc_mask.clone() | |
if hidden_states.shape[0] != _uc_mask.shape[0]: | |
_uc_mask = ( | |
torch.Tensor([1] * (hidden_states.shape[0] // 2) + [0] * (hidden_states.shape[0] // 2)) | |
.to(hidden_states_uc.device) | |
.bool() | |
) | |
hidden_states_c[_uc_mask] = ( | |
self.attn1( | |
norm_hidden_states[_uc_mask], | |
encoder_hidden_states=norm_hidden_states[_uc_mask], | |
attention_mask=attention_mask, | |
) | |
+ hidden_states[_uc_mask] | |
) | |
hidden_states = hidden_states_c.clone() | |
else: | |
hidden_states = hidden_states_uc | |
if self.attn2 is not None: | |
# Cross-Attention | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
hidden_states = ( | |
self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
) | |
+ hidden_states | |
) | |
# Feed-forward | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
# Temporal-Attention | |
if self.unet_use_temporal_attention: | |
d = hidden_states.shape[1] | |
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) | |
norm_hidden_states = ( | |
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) | |
) | |
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states | |
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
return hidden_states | |
class LabelEmbedding(nn.Module): | |
def __init__(self, num_classes, hidden_size, dropout_prob): | |
super().__init__() | |
use_cfg_embedding = dropout_prob > 0 | |
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) | |
self.num_classes = num_classes | |
self.dropout_prob = dropout_prob | |
def token_drop(self, labels, force_drop_ids=None): | |
# Drops labels to enable classifier-free guidance. | |
if force_drop_ids is None: | |
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob | |
else: | |
drop_ids = torch.tensor(force_drop_ids == 1) | |
labels = torch.where(drop_ids, self.num_classes, labels) | |
return labels | |
def forward(self, labels: torch.LongTensor, force_drop_ids=None): | |
use_dropout = self.dropout_prob > 0 | |
if (self.training and use_dropout) or (force_drop_ids is not None): | |
labels = self.token_drop(labels, force_drop_ids) | |
embeddings = self.embedding_table(labels) | |
return embeddings | |
class EmoAdaLayerNorm(nn.Module): | |
def __init__( | |
self, | |
embedding_dim, | |
num_classes=9, | |
norm_elementwise_affine: bool = False, | |
norm_eps: float = 1e-5, | |
class_dropout_prob=0.3, | |
): | |
super().__init__() | |
self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob) | |
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(embedding_dim, 2 * embedding_dim, bias=True)) | |
def forward(self, x, emotion=None): | |
emo_embedding = self.class_embedder(emotion) | |
shift, scale = self.adaLN_modulation(emo_embedding).chunk(2, dim=1) | |
if emotion.shape[0] > 1: | |
repeat = x.shape[0] // emo_embedding.shape[0] | |
scale = scale.unsqueeze(1) | |
scale = torch.repeat_interleave(scale, repeats=repeat, dim=0) | |
shift = shift.unsqueeze(1) | |
shift = torch.repeat_interleave(shift, repeats=repeat, dim=0) | |
else: | |
scale = scale.unsqueeze(1) | |
shift = shift.unsqueeze(1) | |
x = self.norm(x) * (1 + scale) + shift | |
return x | |
class JointAudioTemporalBasicTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
unet_use_cross_frame_attention=None, | |
unet_use_temporal_attention=None, | |
depth=0, | |
unet_block_name=None, | |
use_ada_layer_norm=False, | |
emo_drop_rate=0.3, | |
is_final_block=False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm = use_ada_layer_norm | |
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention | |
self.unet_use_temporal_attention = unet_use_temporal_attention | |
self.unet_block_name = unet_block_name | |
self.depth = depth | |
self.is_final_block = is_final_block | |
self.norm1 = ( | |
EmoAdaLayerNorm(dim, num_classes=9, class_dropout_prob=emo_drop_rate) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim) | |
) | |
self.attn1 = CustomAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
self.audio_norm1 = ( | |
EmoAdaLayerNorm(cross_attention_dim, num_classes=9, class_dropout_prob=emo_drop_rate) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(cross_attention_dim) | |
) | |
self.audio_attn1 = CustomAttention( | |
query_dim=cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
self.norm2 = ( | |
EmoAdaLayerNorm(dim, num_classes=9, class_dropout_prob=emo_drop_rate) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim) | |
) | |
self.audio_norm2 = ( | |
EmoAdaLayerNorm(cross_attention_dim, num_classes=9, class_dropout_prob=emo_drop_rate) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(cross_attention_dim) | |
) | |
# Joint Attention | |
self.attn2 = CustomAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
cross_attention_dim=dim, | |
added_kv_proj_dim=cross_attention_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
only_cross_attention=False, | |
out_dim=dim, | |
context_out_dim=cross_attention_dim, | |
context_pre_only=False, | |
processor=JointAttnProcessor2_0(), | |
is_final_block=is_final_block, | |
) | |
# Feed-forward | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
self.norm3 = nn.LayerNorm(dim) | |
if not is_final_block: | |
self.audio_ff = FeedForward(cross_attention_dim, dropout=dropout, activation_fn=activation_fn) | |
self.audio_norm3 = nn.LayerNorm(cross_attention_dim) | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
emotion=None, | |
): | |
norm_hidden_states = ( | |
self.norm1(hidden_states, emotion) if self.use_ada_layer_norm else self.norm1(hidden_states) | |
) | |
norm_encoder_hidden_states = ( | |
self.audio_norm1(encoder_hidden_states, emotion) | |
if self.use_ada_layer_norm | |
else self.audio_norm1(encoder_hidden_states) | |
) | |
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states | |
encoder_hidden_states = ( | |
self.audio_attn1(norm_encoder_hidden_states, attention_mask=attention_mask) + encoder_hidden_states | |
) | |
norm_hidden_states = ( | |
self.norm2(hidden_states, emotion) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
norm_encoder_hidden_states = ( | |
self.audio_norm2(encoder_hidden_states, emotion) | |
if self.use_ada_layer_norm | |
else self.audio_norm2(encoder_hidden_states) | |
) | |
joint_hidden_states, joint_encoder_hidden_states = self.attn2( | |
norm_hidden_states, | |
norm_encoder_hidden_states, | |
) | |
hidden_states = joint_hidden_states + hidden_states | |
if not self.is_final_block: | |
encoder_hidden_states = joint_encoder_hidden_states + encoder_hidden_states | |
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
if not self.is_final_block: | |
encoder_hidden_states = self.audio_ff(self.audio_norm3(encoder_hidden_states)) + encoder_hidden_states | |
else: | |
encoder_hidden_states = None | |
return hidden_states, encoder_hidden_states | |
def zero_module(module): | |
for p in module.parameters(): | |
nn.init.zeros_(p) | |
return module | |