Spaces:
Sleeping
Sleeping
File size: 11,800 Bytes
1a9b87d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import inspect
from dataclasses import dataclass
from typing import Callable, List, Optional, Union
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
@dataclass
class VideoPipelineOutput(BaseOutput):
videos: Union[torch.Tensor, np.ndarray]
class VideoPipeline(DiffusionPipeline):
def __init__(
self,
vae,
reference_net,
diffusion_net,
image_proj,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
) -> None:
super().__init__()
self.register_modules(
vae=vae,
reference_net=reference_net,
diffusion_net=diffusion_net,
scheduler=scheduler,
image_proj=image_proj,
)
self.vae_scale_factor: int = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.ref_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor,
do_convert_rgb=True,
)
@property
def _execution_device(self):
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def prepare_latents(
self,
batch_size: int, # Number of videos to generate in parallel
num_channels_latents: int, # Number of channels in the latents
width: int, # Width of the video frame
height: int, # Height of the video frame
video_length: int, # Length of the video in frames
dtype: torch.dtype, # Data type of the latents
device: torch.device, # Device to store the latents on
generator: Optional[torch.Generator] = None, # Random number generator for reproducibility
latents: Optional[torch.Tensor] = None, # Pre-generated latents (optional)
):
shape = (
batch_size,
num_channels_latents,
video_length,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
if hasattr(self.scheduler, "init_noise_sigma"):
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def decode_latents(self, latents):
video_length = latents.shape[2]
latents = 1 / 0.18215 * latents
latents = rearrange(latents, "b c f h w -> (b f) c h w")
video = []
for frame_idx in range(latents.shape[0]):
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
video = torch.cat(video)
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
video = (video / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
video = video.cpu().float().numpy()
return video
@torch.no_grad()
def __call__(
self,
ref_image,
face_emb,
audio_tensor,
width,
height,
video_length,
num_inference_steps,
guidance_scale,
num_images_per_prompt=1,
eta: float = 0.0,
audio_emotion=None,
emotion_class_num=None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "tensor",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
):
# Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
device = self._execution_device
do_classifier_free_guidance = guidance_scale > 1.0
# Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
batch_size = 1
# prepare clip image embeddings
clip_image_embeds = face_emb
clip_image_embeds = clip_image_embeds.to(self.image_proj.device, self.image_proj.dtype)
encoder_hidden_states = self.image_proj(clip_image_embeds)
uncond_encoder_hidden_states = self.image_proj(torch.zeros_like(clip_image_embeds))
if do_classifier_free_guidance:
encoder_hidden_states = torch.cat([uncond_encoder_hidden_states, encoder_hidden_states], dim=0)
num_channels_latents = self.diffusion_net.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
width,
height,
video_length,
clip_image_embeds.dtype,
device,
generator,
)
# Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# Prepare ref image latents
ref_image_tensor = rearrange(ref_image, "b f c h w -> (b f) c h w")
ref_image_tensor = self.ref_image_processor.preprocess(
ref_image_tensor, height=height, width=width
) # (bs, c, width, height)
ref_image_tensor = ref_image_tensor.to(dtype=self.vae.dtype, device=self.vae.device)
# To save memory on GPUs like RTX 4090, we encode each frame separately
# ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
ref_image_latents = []
for frame_idx in range(ref_image_tensor.shape[0]):
ref_image_latents.append(self.vae.encode(ref_image_tensor[frame_idx : frame_idx + 1]).latent_dist.mean)
ref_image_latents = torch.cat(ref_image_latents, dim=0)
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)
if do_classifier_free_guidance:
uncond_audio_tensor = torch.zeros_like(audio_tensor)
audio_tensor = torch.cat([uncond_audio_tensor, audio_tensor], dim=0)
audio_tensor = audio_tensor.to(dtype=self.diffusion_net.dtype, device=self.diffusion_net.device)
# denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i in range(len(timesteps)):
t = timesteps[i]
# Forward reference image
if i == 0:
ref_features = self.reference_net(
ref_image_latents.repeat((2 if do_classifier_free_guidance else 1), 1, 1, 1),
torch.zeros_like(t),
encoder_hidden_states=encoder_hidden_states,
return_dict=False,
)
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
if hasattr(self.scheduler, "scale_model_input"):
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
audio_emotion = torch.tensor(torch.mode(audio_emotion).values.item()).to(
dtype=torch.int, device=self.diffusion_net.device
)
if do_classifier_free_guidance:
uncond_audio_emotion = torch.full_like(audio_emotion, emotion_class_num)
audio_emotion = torch.cat(
[uncond_audio_emotion.unsqueeze(0), audio_emotion.unsqueeze(0)],
dim=0,
)
uc_mask = (
torch.Tensor(
[1] * batch_size * num_images_per_prompt * 16
+ [0] * batch_size * num_images_per_prompt * 16
)
.to(device)
.bool()
)
else:
uc_mask = None
noise_pred = self.diffusion_net(
latent_model_input,
ref_features,
t,
encoder_hidden_states=encoder_hidden_states,
audio_embedding=audio_tensor,
audio_emotion=audio_emotion,
uc_mask=uc_mask,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0:
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# Post-processing
images = self.decode_latents(latents) # (b, c, f, h, w)
# Convert to tensor
if output_type == "tensor":
images = torch.from_numpy(images)
if not return_dict:
return images
return VideoPipelineOutput(videos=images)
|