Spaces:
Runtime error
Runtime error
File size: 10,244 Bytes
1a9b87d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import argparse
import logging
import os
import torch
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from diffusers.utils.import_utils import is_xformers_available
from omegaconf import OmegaConf
from packaging import version
from tqdm import tqdm
from memo.models.audio_proj import AudioProjModel
from memo.models.image_proj import ImageProjModel
from memo.models.unet_2d_condition import UNet2DConditionModel
from memo.models.unet_3d import UNet3DConditionModel
from memo.pipelines.video_pipeline import VideoPipeline
from memo.utils.audio_utils import extract_audio_emotion_labels, preprocess_audio, resample_audio
from memo.utils.vision_utils import preprocess_image, tensor_to_video
logger = logging.getLogger("memo")
logger.setLevel(logging.INFO)
def parse_args():
parser = argparse.ArgumentParser(description="Inference script for MEMO")
parser.add_argument("--config", type=str, default="configs/inference.yaml")
parser.add_argument("--input_image", type=str)
parser.add_argument("--input_audio", type=str)
parser.add_argument("--output_dir", type=str)
parser.add_argument("--seed", type=int, default=42)
return parser.parse_args()
def main():
# Parse arguments
args = parse_args()
input_image_path = args.input_image
input_audio_path = args.input_audio
if "wav" not in input_audio_path:
logger.warning("MEMO might not generate full-length video for non-wav audio file.")
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
output_video_path = os.path.join(
output_dir,
f"{os.path.basename(input_image_path).split('.')[0]}_{os.path.basename(input_audio_path).split('.')[0]}.mp4",
)
if os.path.exists(output_video_path):
logger.info(f"Output file {output_video_path} already exists. Skipping inference.")
return
generator = torch.manual_seed(args.seed)
logger.info(f"Loading config from {args.config}")
config = OmegaConf.load(args.config)
# Determine model paths
if config.model_name_or_path == "memoavatar/memo":
logger.info(
f"The MEMO model will be downloaded from Hugging Face to the default cache directory. The models for face analysis and vocal separation will be downloaded to {config.misc_model_dir}."
)
face_analysis = os.path.join(config.misc_model_dir, "misc/face_analysis")
os.makedirs(face_analysis, exist_ok=True)
for model in [
"1k3d68.onnx",
"2d106det.onnx",
"face_landmarker_v2_with_blendskapes.task",
"genderage.onnx",
"glintr100.onnx",
"scrfd_10g_bnkps.onnx",
]:
if not os.path.exists(os.path.join(face_analysis, model)):
logger.info(f"Downloading {model} to {face_analysis}")
os.system(
f"wget -P {face_analysis} https://huggingface.co/memoavatar/memo/raw/main/misc/face_analysis/models/{model}"
)
logger.info(f"Use face analysis models from {face_analysis}")
vocal_separator = os.path.join(config.misc_model_dir, "misc/vocal_separator/Kim_Vocal_2.onnx")
if os.path.exists(vocal_separator):
logger.info(f"Vocal separator {vocal_separator} already exists. Skipping download.")
else:
logger.info(f"Downloading vocal separator to {vocal_separator}")
os.makedirs(os.path.dirname(vocal_separator), exist_ok=True)
os.system(
f"wget -P {os.path.dirname(vocal_separator)} https://huggingface.co/memoavatar/memo/raw/main/misc/vocal_separator/Kim_Vocal_2.onnx"
)
else:
logger.info(f"Loading manually specified model path: {config.model_name_or_path}")
face_analysis = os.path.join(config.model_name_or_path, "misc/face_analysis")
vocal_separator = os.path.join(config.model_name_or_path, "misc/vocal_separator/Kim_Vocal_2.onnx")
# Set up device and weight dtype
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
elif config.weight_dtype == "bf16":
weight_dtype = torch.bfloat16
elif config.weight_dtype == "fp32":
weight_dtype = torch.float32
else:
weight_dtype = torch.float32
logger.info(f"Inference dtype: {weight_dtype}")
logger.info(f"Processing image {input_image_path}")
img_size = (config.resolution, config.resolution)
pixel_values, face_emb = preprocess_image(
face_analysis_model=face_analysis,
image_path=input_image_path,
image_size=config.resolution,
)
logger.info(f"Processing audio {input_audio_path}")
cache_dir = os.path.join(output_dir, "audio_preprocess")
os.makedirs(cache_dir, exist_ok=True)
input_audio_path = resample_audio(
input_audio_path,
os.path.join(cache_dir, f"{os.path.basename(input_audio_path).split('.')[0]}-16k.wav"),
)
audio_emb, audio_length = preprocess_audio(
wav_path=input_audio_path,
num_generated_frames_per_clip=config.num_generated_frames_per_clip,
fps=config.fps,
wav2vec_model=config.wav2vec,
vocal_separator_model=vocal_separator,
cache_dir=cache_dir,
device=device,
)
logger.info("Processing audio emotion")
audio_emotion, num_emotion_classes = extract_audio_emotion_labels(
model=config.model_name_or_path,
wav_path=input_audio_path,
emotion2vec_model=config.emotion2vec,
audio_length=audio_length,
device=device,
)
logger.info("Loading models")
vae = AutoencoderKL.from_pretrained(config.vae).to(device=device, dtype=weight_dtype)
reference_net = UNet2DConditionModel.from_pretrained(
config.model_name_or_path, subfolder="reference_net", use_safetensors=True
)
diffusion_net = UNet3DConditionModel.from_pretrained(
config.model_name_or_path, subfolder="diffusion_net", use_safetensors=True
)
image_proj = ImageProjModel.from_pretrained(
config.model_name_or_path, subfolder="image_proj", use_safetensors=True
)
audio_proj = AudioProjModel.from_pretrained(
config.model_name_or_path, subfolder="audio_proj", use_safetensors=True
)
vae.requires_grad_(False).eval()
reference_net.requires_grad_(False).eval()
diffusion_net.requires_grad_(False).eval()
image_proj.requires_grad_(False).eval()
audio_proj.requires_grad_(False).eval()
# Enable memory-efficient attention for xFormers
if config.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.info(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
reference_net.enable_xformers_memory_efficient_attention()
diffusion_net.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Create inference pipeline
noise_scheduler = FlowMatchEulerDiscreteScheduler()
pipeline = VideoPipeline(
vae=vae,
reference_net=reference_net,
diffusion_net=diffusion_net,
scheduler=noise_scheduler,
image_proj=image_proj,
)
pipeline.to(device=device, dtype=weight_dtype)
video_frames = []
num_clips = audio_emb.shape[0] // config.num_generated_frames_per_clip
for t in tqdm(range(num_clips), desc="Generating video clips"):
if len(video_frames) == 0:
# Initialize the first past frames with reference image
past_frames = pixel_values.repeat(config.num_init_past_frames, 1, 1, 1)
past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device)
pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0)
else:
past_frames = video_frames[-1][0]
past_frames = past_frames.permute(1, 0, 2, 3)
past_frames = past_frames[0 - config.num_past_frames :]
past_frames = past_frames * 2.0 - 1.0
past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device)
pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0)
pixel_values_ref_img = pixel_values_ref_img.unsqueeze(0)
audio_tensor = (
audio_emb[
t
* config.num_generated_frames_per_clip : min(
(t + 1) * config.num_generated_frames_per_clip, audio_emb.shape[0]
)
]
.unsqueeze(0)
.to(device=audio_proj.device, dtype=audio_proj.dtype)
)
audio_tensor = audio_proj(audio_tensor)
audio_emotion_tensor = audio_emotion[
t
* config.num_generated_frames_per_clip : min(
(t + 1) * config.num_generated_frames_per_clip, audio_emb.shape[0]
)
]
pipeline_output = pipeline(
ref_image=pixel_values_ref_img,
audio_tensor=audio_tensor,
audio_emotion=audio_emotion_tensor,
emotion_class_num=num_emotion_classes,
face_emb=face_emb,
width=img_size[0],
height=img_size[1],
video_length=config.num_generated_frames_per_clip,
num_inference_steps=config.inference_steps,
guidance_scale=config.cfg_scale,
generator=generator,
)
video_frames.append(pipeline_output.videos)
video_frames = torch.cat(video_frames, dim=2)
video_frames = video_frames.squeeze(0)
video_frames = video_frames[:, :audio_length]
tensor_to_video(video_frames, output_video_path, input_audio_path, fps=config.fps)
if __name__ == "__main__":
main()
|