File size: 10,244 Bytes
1a9b87d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import argparse
import logging
import os

import torch
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from diffusers.utils.import_utils import is_xformers_available
from omegaconf import OmegaConf
from packaging import version
from tqdm import tqdm

from memo.models.audio_proj import AudioProjModel
from memo.models.image_proj import ImageProjModel
from memo.models.unet_2d_condition import UNet2DConditionModel
from memo.models.unet_3d import UNet3DConditionModel
from memo.pipelines.video_pipeline import VideoPipeline
from memo.utils.audio_utils import extract_audio_emotion_labels, preprocess_audio, resample_audio
from memo.utils.vision_utils import preprocess_image, tensor_to_video


logger = logging.getLogger("memo")
logger.setLevel(logging.INFO)


def parse_args():
    parser = argparse.ArgumentParser(description="Inference script for MEMO")

    parser.add_argument("--config", type=str, default="configs/inference.yaml")
    parser.add_argument("--input_image", type=str)
    parser.add_argument("--input_audio", type=str)
    parser.add_argument("--output_dir", type=str)
    parser.add_argument("--seed", type=int, default=42)

    return parser.parse_args()


def main():
    # Parse arguments
    args = parse_args()
    input_image_path = args.input_image
    input_audio_path = args.input_audio
    if "wav" not in input_audio_path:
        logger.warning("MEMO might not generate full-length video for non-wav audio file.")
    output_dir = args.output_dir
    os.makedirs(output_dir, exist_ok=True)
    output_video_path = os.path.join(
        output_dir,
        f"{os.path.basename(input_image_path).split('.')[0]}_{os.path.basename(input_audio_path).split('.')[0]}.mp4",
    )

    if os.path.exists(output_video_path):
        logger.info(f"Output file {output_video_path} already exists. Skipping inference.")
        return

    generator = torch.manual_seed(args.seed)

    logger.info(f"Loading config from {args.config}")
    config = OmegaConf.load(args.config)

    # Determine model paths
    if config.model_name_or_path == "memoavatar/memo":
        logger.info(
            f"The MEMO model will be downloaded from Hugging Face to the default cache directory. The models for face analysis and vocal separation will be downloaded to {config.misc_model_dir}."
        )

        face_analysis = os.path.join(config.misc_model_dir, "misc/face_analysis")
        os.makedirs(face_analysis, exist_ok=True)
        for model in [
            "1k3d68.onnx",
            "2d106det.onnx",
            "face_landmarker_v2_with_blendskapes.task",
            "genderage.onnx",
            "glintr100.onnx",
            "scrfd_10g_bnkps.onnx",
        ]:
            if not os.path.exists(os.path.join(face_analysis, model)):
                logger.info(f"Downloading {model} to {face_analysis}")
                os.system(
                    f"wget -P {face_analysis} https://huggingface.co/memoavatar/memo/raw/main/misc/face_analysis/models/{model}"
                )
        logger.info(f"Use face analysis models from {face_analysis}")

        vocal_separator = os.path.join(config.misc_model_dir, "misc/vocal_separator/Kim_Vocal_2.onnx")
        if os.path.exists(vocal_separator):
            logger.info(f"Vocal separator {vocal_separator} already exists. Skipping download.")
        else:
            logger.info(f"Downloading vocal separator to {vocal_separator}")
            os.makedirs(os.path.dirname(vocal_separator), exist_ok=True)
            os.system(
                f"wget -P {os.path.dirname(vocal_separator)} https://huggingface.co/memoavatar/memo/raw/main/misc/vocal_separator/Kim_Vocal_2.onnx"
            )
    else:
        logger.info(f"Loading manually specified model path: {config.model_name_or_path}")
        face_analysis = os.path.join(config.model_name_or_path, "misc/face_analysis")
        vocal_separator = os.path.join(config.model_name_or_path, "misc/vocal_separator/Kim_Vocal_2.onnx")

    # Set up device and weight dtype
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    if config.weight_dtype == "fp16":
        weight_dtype = torch.float16
    elif config.weight_dtype == "bf16":
        weight_dtype = torch.bfloat16
    elif config.weight_dtype == "fp32":
        weight_dtype = torch.float32
    else:
        weight_dtype = torch.float32
    logger.info(f"Inference dtype: {weight_dtype}")

    logger.info(f"Processing image {input_image_path}")
    img_size = (config.resolution, config.resolution)
    pixel_values, face_emb = preprocess_image(
        face_analysis_model=face_analysis,
        image_path=input_image_path,
        image_size=config.resolution,
    )

    logger.info(f"Processing audio {input_audio_path}")
    cache_dir = os.path.join(output_dir, "audio_preprocess")
    os.makedirs(cache_dir, exist_ok=True)
    input_audio_path = resample_audio(
        input_audio_path,
        os.path.join(cache_dir, f"{os.path.basename(input_audio_path).split('.')[0]}-16k.wav"),
    )
    audio_emb, audio_length = preprocess_audio(
        wav_path=input_audio_path,
        num_generated_frames_per_clip=config.num_generated_frames_per_clip,
        fps=config.fps,
        wav2vec_model=config.wav2vec,
        vocal_separator_model=vocal_separator,
        cache_dir=cache_dir,
        device=device,
    )

    logger.info("Processing audio emotion")
    audio_emotion, num_emotion_classes = extract_audio_emotion_labels(
        model=config.model_name_or_path,
        wav_path=input_audio_path,
        emotion2vec_model=config.emotion2vec,
        audio_length=audio_length,
        device=device,
    )

    logger.info("Loading models")
    vae = AutoencoderKL.from_pretrained(config.vae).to(device=device, dtype=weight_dtype)
    reference_net = UNet2DConditionModel.from_pretrained(
        config.model_name_or_path, subfolder="reference_net", use_safetensors=True
    )
    diffusion_net = UNet3DConditionModel.from_pretrained(
        config.model_name_or_path, subfolder="diffusion_net", use_safetensors=True
    )
    image_proj = ImageProjModel.from_pretrained(
        config.model_name_or_path, subfolder="image_proj", use_safetensors=True
    )
    audio_proj = AudioProjModel.from_pretrained(
        config.model_name_or_path, subfolder="audio_proj", use_safetensors=True
    )

    vae.requires_grad_(False).eval()
    reference_net.requires_grad_(False).eval()
    diffusion_net.requires_grad_(False).eval()
    image_proj.requires_grad_(False).eval()
    audio_proj.requires_grad_(False).eval()

    # Enable memory-efficient attention for xFormers
    if config.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.info(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
            reference_net.enable_xformers_memory_efficient_attention()
            diffusion_net.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

    # Create inference pipeline
    noise_scheduler = FlowMatchEulerDiscreteScheduler()
    pipeline = VideoPipeline(
        vae=vae,
        reference_net=reference_net,
        diffusion_net=diffusion_net,
        scheduler=noise_scheduler,
        image_proj=image_proj,
    )
    pipeline.to(device=device, dtype=weight_dtype)

    video_frames = []
    num_clips = audio_emb.shape[0] // config.num_generated_frames_per_clip
    for t in tqdm(range(num_clips), desc="Generating video clips"):
        if len(video_frames) == 0:
            # Initialize the first past frames with reference image
            past_frames = pixel_values.repeat(config.num_init_past_frames, 1, 1, 1)
            past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device)
            pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0)
        else:
            past_frames = video_frames[-1][0]
            past_frames = past_frames.permute(1, 0, 2, 3)
            past_frames = past_frames[0 - config.num_past_frames :]
            past_frames = past_frames * 2.0 - 1.0
            past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device)
            pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0)

        pixel_values_ref_img = pixel_values_ref_img.unsqueeze(0)

        audio_tensor = (
            audio_emb[
                t
                * config.num_generated_frames_per_clip : min(
                    (t + 1) * config.num_generated_frames_per_clip, audio_emb.shape[0]
                )
            ]
            .unsqueeze(0)
            .to(device=audio_proj.device, dtype=audio_proj.dtype)
        )
        audio_tensor = audio_proj(audio_tensor)

        audio_emotion_tensor = audio_emotion[
            t
            * config.num_generated_frames_per_clip : min(
                (t + 1) * config.num_generated_frames_per_clip, audio_emb.shape[0]
            )
        ]

        pipeline_output = pipeline(
            ref_image=pixel_values_ref_img,
            audio_tensor=audio_tensor,
            audio_emotion=audio_emotion_tensor,
            emotion_class_num=num_emotion_classes,
            face_emb=face_emb,
            width=img_size[0],
            height=img_size[1],
            video_length=config.num_generated_frames_per_clip,
            num_inference_steps=config.inference_steps,
            guidance_scale=config.cfg_scale,
            generator=generator,
        )

        video_frames.append(pipeline_output.videos)

    video_frames = torch.cat(video_frames, dim=2)
    video_frames = video_frames.squeeze(0)
    video_frames = video_frames[:, :audio_length]

    tensor_to_video(video_frames, output_video_path, input_audio_path, fps=config.fps)


if __name__ == "__main__":
    main()